
Programmable Questions in Edgar

I. Mekterović *, Lj. Brkić* and V. Krstić**

* University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

** The Fifth Gymnasium, Zagreb, Croatia

igor.mekterovic@fer.hr

Abstract - Automated programming assessment systems

(APAS) are a valuable tool that is growing in popularity,

particularly in the field of computer science education. They

can provide quick and objective assessment and feedback to

the programming assignments – those that receive source

code as a response. Most APASs treat code as a black box and

employ dynamic analysis to assess code. Dynamic analysis is

straightforward, easily implemented, explainable, and works

well in most situations. Edgar is a comprehensive, state of the

art APAS, that has been used daily and has evolved for the

past six years. This paper examines the pipeline used by

Edgar to assess programming questions and presents our

enhancements to the traditional dynamic analysis -

programmable templates and scripts. Templates enable

customized question texts based on the programmable model,

so that each student can receive personalized variation of the

question. Personalized questions are a great way to fight

potential academic dishonesty. Scripts are plugged into the

assessment pipeline after the dynamic analysis and can

override the default grade by examining some other aspect of

the program. We also offer our thoughts on upcoming plans

to include generic static analysis as we move closer to a

unified assessment pipeline.

Keywords - APAS; automated assessment; dynamic

analysis; programmable questions, CS education

I. INTRODUCTION

Automated programming assessment systems (APAS)
is an information system used in educational environments
to (semi)automatically assess students' answers to
programming questions. They typically also support other
types of questions, such as multiple-choice questions, and
provide monitoring and logging of exams, various
statistics, and visualizations, etc. Nowadays, they are
typically implemented as web applications. A detailed
overview of comprehensive APAS features can be found in
our previous work [1]. APASs provide fast and objective
assessment and feedback but are less capable of producing
partial assessments, especially for code that cannot be
executed (e.g., does not compile). Manual assessment of
code by teachers is still considered the gold standard, but
manual assessment is difficult and very time consuming for
the teachers. Nevertheless, APASs are being increasingly
developed and used (great recent overviews can be found
in [2] and [3]), and it is now hard to imagine a larger
computer science course that does not use APASs to one
degree or another. At the Faculty of Electrical Engineering
and Computing, we have been developing and actively
using a state-of-the-art APAS called Edgar for six years,
and it has become an indispensable part of many computer

science courses, relying on it for part or even all of the
assessment. For example, in the previous academic year
2021/22, more than 57,000 exams were administered using
Edgar, containing approximately 340,000 questions from
19 different courses. In this paper, we present two
improvements made to the classic question assessment
pipeline. First, we introduced templates to enable
programmatic question content generation so that each
student could obtain a personalized question variation.
Second, we enable custom scripts that are appended at the
end of the assessment pipeline and can alter the assessment
outcome. Although our focus is on programming questions,
both concepts can be used on any type of question. In the
following chapters, we briefly outline assessment types in
APASs and in Edgar, and then present templates and scripts
in dedicated chapters, followed by brief discussion and
conclusion.

II. CODE ASSESSMENT IN AUTOMATED PROGRAMMING

ASSESSMENT SYSTEMS

Techniques for evaluating program code can be roughly
divided into dynamic and static analyses. Dynamic
analysis is much more prevalent, and most APAS bases
their assessment on dynamic analysis.

A. Dynamic analysis

In dynamic analysis, the program is treated as a black
box and tested by running it with different input data and
analyzing the outputs. For one program, it is possible to
define N test-cases (which can affect the sore with different
weights), so it is also possible to achieve partial evaluation.
However, the disadvantage of dynamic analysis is that the
program must be able to run, so programs that cannot be
compiled, for example, will not be able to run and will be
rated with the worst rating. On the other hand, this approach
is widely applicable because the same principle is applied
for any programming language, it is only necessary to
establish the process of compilation and execution for a
language and to ensure that the execution of the program
does not have negative side-effects, i.e., it is necessary to
execute the program in a sandbox - protected and limited
environment. Edgar uses a separate code execution system
named Judge0 [4] for secure and scalable code execution.

Dynamic analysis mainly tests the functional aspects of
the program, but it is also possible to analyze some non-
functional attributes, such as efficiency (CPU, time,
memory, etc…). However, latter is much more difficult to
implement because it is necessary to ensure that all
programs have exactly the same resources at their disposal
(CPU, disk, ...), which is almost impossible in virtualized This work was supported by the European Regional Development

Fund under Grant KK.01.1.1.01.0009 (DATACROSS).

MIPRO 2023/CE 831

environments, so it is advisable to repeat the analysis
several times and statistically process the results.

B. Static analysis

In static analysis, the program is analyzed without
executing the program. It is used to check style, syntax
errors, various metrics (number of lines of code, cyclomatic
complexity, etc.), program design and structure, special
properties (e.g., use of an expression), and even plagiarism
detection [5]. It should be noted that the manual review of
program code written on paper is actually a static analysis
performed by a teacher through visual inspection. In regard
to assessment and grading, the typical workflow is as
follows: source code is parsed to construct an abstract
syntax tree, which is then transformed into a graph
representation and compared to a set of reference graphs
using graph similarity measures. The best fit is used to find
the potential differences, and an overall assessment is
given. Static analysis is very dependent on the
programming language, and it is difficult to implement it
uniformly. Typically, the literature contains works focused
on a specific programming language. In addition, it is more
difficult to design tasks that are checked in this way (e.g.,
to provide the set of all correct solutions). The field of
application of static analysis is smaller than that of dynamic
analysis.

Finally, it should be noted that static and dynamic
analysis can be combined into a joint - hybrid evaluation
method.

III. ASSESSMENT IN EDGAR

Dynamic analysis has been used in Edgar since the
beginning. It was initially developed only for the SQL
programming language, where the resulting data sets from
two SQL commands were compared, and then dynamic
analysis was implemented for standalone languages. In
both approaches, the program code is separated into three
parts: prefix, main part, and suffix. Only the main part
represents the solution that is expected from the student,
and the optional prefix and suffix allow the teachers greater
options in formulating and testing the questions. Namely,
before executing the code, those three parts are merged into
one, which means that the teacher can inject their own code
before and/or after the student's code. Therefore, for
example, it is possible to ask a student to write only a
function, and the teacher injects his own code that calls and
tests that function. Similarly, it is possible to ask a student
to submit just one Java class, which can then be instantiated
and/or explored using reflection, and thus even non-
functional code properties can be evaluated, e.g., whether
the class conforms to naming conventions, etc.

Dynamic evaluation of a question is carried out with an
arbitrary number of test-cases. Additionally, test-cases can
have an arbitrary weight, that is, they can carry a different
number of points. The weight is expressed as a percentage
that is subtracted from the initial 100% and is called the

penalty percentage (PP). Therefore, the correctness is
calculated as follows:

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 ∶= max (0%, 100% − ∑ 𝑃𝑃(𝑓𝑎𝑖𝑙)

𝑓𝑎𝑖𝑙

)

The calculation of the grade itself is carried out in two
stages: first, the correctness is evaluated on a scale of 0% -
100% as described, and then the number of points is
assigned from the correctness based on the assigned
grading model. The grading model is defined as a triplet:

𝑔𝑚 ∶= (𝑐, 𝑖, 𝑒)

where c, i, and e are values for correct, incorrect and
empty answers respectively. As a rule, the incorrect score
is set to a negative value for multiple-choice questions to
discourage students from guessing. For programming
questions, it is always set to zero. Given the grading model,
the final score is calculated according to:

𝑠𝑐𝑜𝑟𝑒 = {

𝒈𝒎. 𝒆 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦

𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒏𝒆𝒔𝒔 ∗ (𝒈𝒎. 𝒄 − 𝒈𝒎. 𝒊)
 +𝒈𝒎. 𝒊 𝑎𝑛𝑠𝑤𝑒𝑟 𝑖𝑠 𝑛𝑜𝑛 𝑒𝑚𝑝𝑡𝑦

Further details and examples can be found in our
previous work [1].

Figure 1. shows the simplified Edgar’s dynamic-
evaluation pipeline, as used in most APAS-es. Technical
details are omitted, and, for the sake of simplicity, it
addresses a single question. In reality, an exam consists of
an arbitrary number of questions. This model works well,
but after several years of use, ideas emerged for some more
demanding evaluation scenarios. With this type of
organization, all students get the same common question
with the same content. If one wants to reduce the possibility
of plagiarism, it is necessary to make several similar
versions of the same question and then assign them to
students by random selection. Although this is possible,
such methodology is tiresome for the teacher, error-prone
and requires significant additional effort. This problem is
addressed by the introduction of templates - the possibility
to programmatically generate or adjust the text of the
assignment for each student. The second improvement that
is presented here refers to the possibility to
programmatically manipulate the outcome of the
assessment performed by Edgar, that is, to override the
default assessment at the end of the evaluation pipeline.

Both concepts are described in the following chapters.

IV. QUESTION TEMPLATES

Templates enable the generation of customized
question content based on the programming model. They
are inspired by the MVC pattern where content is generated
in a view based on a model, while the whole process is
orchestrated by the controller. MVC frameworks typically
generate HTML using programming constructs interleaved
with HTML code. The method of interleaving, that is, the
syntax that can be used in the view definition depends on
the framework and the so-called view/templating engine
that is used to produce the final HTML. For example, in the
.Net MVC framework Razor syntax is used [6], the
Node.JS express development framework allows various
template engines [7](EJS, handlebars, etc.), etc..

Figure 1. Edgar’s initial assessment pipeline

832 MIPRO 2023/CE

To introduce such a concept into the existing model in
Edgar, it is necessary to:

 generate each student's data object only once
when the exam is first started (question retrieved)

o the data object is defined in design time
by the teacher using the JavaScript
programming language.

 generate the custom question content, and

 store both the data model and question content in
the database

In other words, when the student requests the question,
the database is checked for their existing custom question,
and if there is no question, the above-mentioned steps are
taken. Ultimately, in both cases the question is retrieved
from the database. The concept is illustrated with a simple
example: Figure 2. and Figure 3. show the definition of a
templated multiple-choice question where the assignment
is to add two numbers. The model (data object) here
consists of two random numbers x and y and three answers:
a1, a2 and a3, with a1 being the correct answer:

Figure 2. Template data object definition and a random instance

The data object is constructed by invoking the init()
method, which produces some random values, such as the
one shown in Figure 2. These variables can then be used
both in question text and answers, as shown in Figure 3. :

Figure 3. Template definition (left) and preview (right). Tempalate

references variables x and y from the data object.

Note the “moustache/handlebar” syntax in the question
definition (upper left part of Figure 3.) - string interpolation
is performed with double curly braces. Edgar uses GitHub
markdown for rich text content and Handlebars.js as a
templating engine. Handlebars (and consequently Edgar)
support more than just inserting values; it supports
expressions, loops, etc. [8]. The template is rendered in the
context of the given data object. The right part of Figure 3.
shows the rendered template using the ad hoc instantiated

data object every time the “Render template” button is
clicked. The data object is constructed using a three-level
hierarchy:

 global data object (same for all courses, cannot be
changed by a teacher)

 course data object (can be changed by the teachers
in the course)

 question data object (defined when the question is
defined)

Global and course data objects are meant to store utility
methods and variables to simplify the question’s data object
source code (such as the randomInt() method which is not
part of JavaScript). For instance, if global, course and
question data objects are:

Global:
{
 randomInt: function(minInt, maxInt) {
 return Math.floor(Math.random() * (maxInt -
minInt + 1)) + minInt;
 }
}

Course:
{
 randomBoolean: function() {
 return !!this.randomInt(0, 1);
 },
 currAcYear: "2022/2023",
 someOtherConstant: 42
}

Question:
{
 init() {
 this.x = this.randomInt(13, 37);
 this.y = this.randomInt(133, 337);
 this.a1 = this.x + this.y;
 this.a2 = this.a1 - 1;
 this.a3 = this.a1 + this.randomInt(1, 5);
 }
}

Then, the final data object is assembled as follows:

{
 randomInt: function(minInt, maxInt) {
 return Math.floor(Math.random() * (maxInt -
minInt + 1)) + minInt;
 }
 randomBoolean: function() {
 return !!this.randomInt(0, 1);
 },
 currAcYear: "2022/2023",
 someOtherConstant: 42
 init() {
 this.x = this.randomInt(13, 37);
 this.y = this.randomInt(133, 337);
 this.a1 = this.x + this.y;
 this.a2 = this.a1 - 1;
 this.a3 = this.a1 + this.randomInt(1, 5);
 }
}

Which when init() is called, will produce e.g.:
{
 "currAcYear": "2022/2023",
 "someOtherConstant": 42
 "x": 31,
 "y": 203,
 "a1": 234,
 "a2": 233,

MIPRO 2023/CE 833

 "a3": 239
}

V. OVERRIDE SCRIPTS

Scripted questions enable teachers to append custom
scoring codes/scripts at the end of the assessment pipeline.
Scripts were inspired by checker programs in competitive
programming: “In programming competition environment,
a checker is a program written for the purpose to check the
output of the contestant's program for a task that has many
solutions. Usually, a checker is written manually as
needed.”[9]. The purpose of checkers, or override scripts
as they are called in Edgar, is to enable custom grading in
advanced scenarios. Consider the following example
assignment:

Assignment:
Print "hello world" in C programming language

without using the printf function.
The output produced by the student’s solution – “hello

world” can be checked with dynamic testing, but the non-
functional program property “without using the printf”
cannot. However, a script that would have access to
submitted code could simply search for “printf” in the code
and override the score if “printf” is found. If not found, the
score should be inherited from the dynamic analysis.
Obviously, the script must have access at least to code and
dynamic analysis score.

Accordingly, the scripts are embedded at the end of the
pipeline, as shown in Figure 4.

Figure 4. Assessment pipeline in Edgar with newly added features

(gray): templates (at the beginning) and override scripts (at the end).

If scripted questions are used, the assessment takes
place as follows:

 Edgar performs the built-in default assessment and
scoring and forwards all the relevant data further
down the pipeline.

 A custom evaluation script written by the teacher
is executed:
o The script has all the data from previous steps

at its disposal (question definition, student’s
answer, evaluation score from dynamic
analysis, etc.)

o The script acquires the data object context. If
templates were not used, then the data object
is constructed from the course and question
data object, thus having utility methods at
disposal.

The script must implement the getScore() method which

returns the score object. Thus, the teacher can alter the

default score object that was received as an argument.
Figure 5. shows the script for this example and Figure

6. shows the resulting score object. Note that scripts can be
used not only to modify the score object, but also to provide
helpful hints to students. Actually, having all the data at
their disposal, the teacher can program anything.

The script can be written in arbitrary programming
language (supported by Edgar, e.g. C, Java, Python…) or
in JavaScript, with the difference being:

 JavaScript (recommended) script is evaluated and
executed in-process, at the web-server machine
serving the request. All relevant data is embedded
in the script data object and is available simply as
this.something, no parsing or evaluating
necessary.

 Other programming languages (Java, C, …) -
scripts are being sent to the Judge0 code execution
engine – the very same used to evaluate students’
code. This means that Edgar invokes an HTTP
request to Judge0, where the code is compiled and
executed in the sandbox. Relevant data are
serialized as JSON and sent to the script as the
single stdin argument. The script/program must
deserialize the input to do anything useful. The
program must return a new score, again - serialized
as JSON, by writing that string to stdout. Edgar
subsequently deserializes the stdout and proceeds.

Figure 5. Override script checking for usage of printf function. If

found, an incorrect score is returned. Otherwise, the score is unchanged,
and the timestamp is appended to the hint.

Figure 6. Score object produced by the script in Figure 5. for correct

submission.

834 MIPRO 2023/CE

For all these reasons, remote procedure calls being
dominant, JS scripts are much faster and easier to write. On
the other hand, in certain advanced scenarios, where
override scripts need complex libraries to check the
program (e.g., NumPy, OpenCV, etc.) the communication
overhead is well worth the cost.

Both templates and override scripts can be used on any type
of question, not just programming questions. Our final
example shows a combination of templates and scripts on a
free-text question. The assignment is a classic first-year
programming task – provide a hexadecimal representation
of a number according to the IEEE 754 standard. First, to
provide each student with their custom number, we define
the data object as follows:

Figure 7. Question data object definition and one random instance.

The object provides the random decimal number and corresponding

hexadecimal IEEE754 representation which will be required of the

student.

The init() method chooses a random integer in the
[100, 200] range and then randomly adds a few negative
powers of two so that the decimal number converts nicely
to binary (unlike. e.g., 0.3 which has an infinite number of
decimals). The program also immediately calculates the
correct answer and stores it in the data object as the
“correct” variable. The template is defined simply as:

Provide a hexadecimal representation of the
number {{x}} according to the IEEE 754 standard.

which will render different numbers for different
students. Finally, the override script must check the
student’s answer and compare it with the prepared correct
answer in the data object (Figure 8.). Figure 9. shows a
simplified UML sequence diagram of the assessment
pipeline for questions using both templates and override
scripts.

Figure 8. Student’s answer is trimmed and converted to uppercase and

compared to the correct answer.

Figure 9. Simplified UML sequence diagram of the assessment pipeline

for questions using both templates and override scripts

MIPRO 2023/CE 835

Override scripts enable teachers to parse free text
answers and grade them. In this way, the teacher can
prescribe the allowed nomenclature and then
programmatically interpret the submitted solutions and
evaluate them. Since textual representations can be
prescribed for many data structures (graphs, tuples, tables,
lists, etc.), this approach opens up great possibilities for
(semi)automatic testing. If necessary, the grades assigned
in this way can be manually reviewed and changed later,
which is also supported in Edgar. We successfully use this
type of assessment, where automatic assessment is
followed by teacher control, in several courses at FER. Of
course, automatic evaluation is of great help to the teacher,
especially for correct solutions. In fact, most of the time, it
is necessary to review only the answers that were declared
incorrect by the automatic evaluation.

It should be noted that override scripts could be used to
perform additional static analysis on the submitted code. In
this way, it is even possible to create a hybrid model - static
and dynamic analysis together. However, we believe that
static analysis via override scripts would not be a good user
experience for a teacher who would have to do too much
programming. In terms of future development, our plan is
to:

 Develop a separate standalone component that can
perform static code analysis and return results in a
standard format (e.g., SARIF [10])

 Allow question authors to include static analysis in
the evaluation pipeline, and then evaluate the
solution using a hybrid model or static analysis
only.

In other words, our goal is to provide a unified
assessment pipeline where teachers can opt-in for various
assessment features and combine them in configurable
ways to provide the assessment. As a side note, although
we use term “pipeline”, technically some steps are
performed in parallel for performance reasons. Of course,
these facilities can be used in other settings, not only during
grading. For example, in e-learning environments, the
student would be helped and guided how to fix the code and
come up with a correct solution.

VI. CONCLUSION

In this article, we introduced two enhancements to the
standard procedure for creating and evaluating questions in

automated code evaluation systems: programmable
templates and override scripts. Templates allow teachers to
programmatically generate question content. In this way, a
single question definition can yield multiple variations and
students can receive personalized questions. Scripts allow
the teacher to build upon the default grade and
programmatically assign a final grade, or just a helpful
comment. In addition to programming questions, both
mechanisms can be used for other types of questions, which
gives teachers much more freedom and opportunities in
composing questions.

REFERENCES

[1] I. Mekterovic, L. Brkic, B. Milasinovic, and M. Baranovic,
“Building a Comprehensive Automated Programming Assessment
System,” IEEE access, vol. 8, pp. 81154–81172, 2020, doi:
10.1109/ACCESS.2020.2990980.

[2] J. C. Paiva, J. P. Leal, and Á. Figueira, “Automated Assessment in
Computer Science Education: A State-of-the-Art Review,” ACM
Trans. Comput. Educ., vol. 22, no. 3, pp. 1–40, Jun. 2022, doi:
10.1145/3513140.

[3] S. Combéfis, “Automated Code Assessment for Education: Review,
Classification and Perspectives on Techniques and Tools,”
Software, vol. 1, no. 1, pp. 3–30, 2022, doi:
10.3390/software1010002.

[4] H. Z. Dosilovic and I. Mekterovic, “Robust and scalable online code
execution system,” 2020 43rd Int. Conv. Information, Commun.
Electron. Technol. MIPRO 2020 - Proc., pp. 1627–1632, Sep. 2020,
doi: 10.23919/MIPRO48935.2020.9245310.

[5] K. M. Ala-Mutka, “A Survey of Automated Assessment
Approaches for Programming Assignments,”
http://dx.doi.org/10.1080/08993400500150747, vol. 15, no. 2, pp.
83–102, 2007, doi: 10.1080/08993400500150747.

[6] “Razor syntax reference for ASP.NET Core | Microsoft Learn.”
https://learn.microsoft.com/en-
us/aspnet/core/mvc/views/razor?view=aspnetcore-7.0 (accessed
Jan. 31, 2023).

[7] “Template Engines.” https://expressjs.com/en/resources/template-
engines.html (accessed Jan. 31, 2023).

[8] “Handlebars.” https://handlebarsjs.com/ (accessed Jan. 31, 2023).

[9] R. I. Hadiwijaya and M. M. Inggriani Liem, “A domain-specific
language for automatic generation of checkers,” Proc. 2015 Int.
Conf. Data Softw. Eng. ICODSE 2015, pp. 7–12, Mar. 2016, doi:
10.1109/ICODSE.2015.7436963.

[10] “SARIF Home.” https://sarifweb.azurewebsites.net/ (accessed Jan.
19, 2023).

836 MIPRO 2023/CE

