
Automatic Evaluation of Student Software

Solutions in a Virtualized Environment

M. Fabijanić, G. Đambić, B. Skračić, and M. Kolarić

Algebra University College/Software Engineering, Zagreb, Croatia

mario.fabijanic@algebra.hr

Abstract – Universities are using Automated

Programming Assessment Systems (APAS) to minimize

problems that emerge by manually managing student

software solutions: subjectivity, inefficiency in case of many

solutions, and lack of fast and rich feedback for the student.

Lately, handling code executions in a secure way has become

a requirement. Researchers addressed this topic and

proposed generic security models: user-level restrictions,

process-level restrictions, and virtualization. In the case of

virtualization, commonly suggested solutions are virtual

machines and containers. With all the benefits of virtual

machines, but less resource-demanding, containers are

becoming widely used last years. This paper proposes a newly

developed assessment model and an information system and

proposes a solution for the automatic evaluation of student

software solutions in a virtualized environment. It analyzes

the key parts of the student solution source codes and

commands against a combination of the test case input data,

using the pattern-finding method. This method was used in

the context of finding the required lexical structures. The

proposed system is used during the exam evaluation of the

Programming course at the College of Algebra, and the

relational database courses, for evaluating SQL solutions in

combination with the previously developed system at the

College of Algebra.

Keywords – APAS; computer science education;

educational technology; automatic evaluation; assessment;

virtualized environment; partial marks; configurable

assessment process

I. INTRODUCTION

With the increase in the popularity of computer

science, as well as university and professional studies in

the field of computing, the enrollment trend at the

corresponding higher education institutions has also

increased. In correlation with this positive trend, the

number of students who take exams and other forms of

testing skills and knowledge of programming each

semester has also increased. Teachers, teaching assistants,

and other staff members spend a lot of time manually and

repetitively correcting student solutions due to the volume

of tests and the number of students that take them.

However, the problem is not new, the first solution to

this problem was created about 60 years ago [1]. In the

meantime, the requirements changed, and the solutions for

automatic correction of the program code met the needs.

This paper describes a software solution that enables
students to submit solutions to exam tasks, reduces the time

consumption of exam correctors, and minimizes the
possibility of human error during evaluation and scoring.
For security reasons, reading and executing submitted user
files should be considered untrusted and executed within a
virtualized environment. The goal is to isolate the processes
that occur when compiling and executing the code from the
environment of the operating system that serves the service
itself. Functional and non-functional requirements,
architecture, and system domain entities are defined, as
well as an analysis of the functionality of each system
component. In the end, an example of the application of the
proposed solution is shown.

The implemented service satisfies two groups of
requirements: code execution requirements and solution
evaluation requirements.

A. Code Execution Requirements

Code execution is a prerequisite for a successful
solution evaluation process. The expected system
capabilities are:

 translation of the original program code

 execution of compiled program code while passing
input data

 stopping the process after a defined time limit.

The main purpose is to translate and execute the source
code submitted as a solution to a specific task. The source
code is translated using a compiler, and only if the code can
be translated into an executable, the program moves to the
execution phase. After executing, it is necessary to read the
stream of standard output (standard output) and the stream
of standard error (standard error). The compilation or
execution of the program must be stopped after a certain
time limit to save processor and memory resources and to
ensure the smooth operation of the system.

Non-functional requirements are not related to
examples of use but to system characteristics, and in the
context of code execution they are the following [2], [3]:

 error tolerance

 compilation and execution within a protected
environment

 agnosticism towards programming languages

 ease of setup and configuration.

When compiling the source code and executing the
program, numerous errors are possible, and some of the

698 MIPRO 2023/CE

mailto:mario.fabijanic@algebra.hr

causes of these errors [2], [3] are the impossibility of
compiling the source code, infinite compilation time,
exceptions, and infinite loops. Source code with syntax
error cannot be compiled, therefore the program ends with
the transfer of the cause of the error. If it is an infinite
translation time, the translator does not report an error, but
the resources of the environment in which the program is
translated are increasingly occupied.

During execution, the program may generate an
exception (for example, accessing a non-existent array
index) that is passed to the standard error stream, which
needs to be read and the error passed. Like the case of
infinite compile time, continuous execution of a program
caused by faulty logic within the code does not raise an
error but consumes resources of the environment in which
the program is executed.

Due to the variety of software transfer formats, the
submitted source code received by the system for security
reasons should be considered untrusted, malicious, and a
potential cause of the errors. Moreover, the code execution
unit could be used within different exam correction
systems, so it is important to separate the process of
compiling and executing the program from the specifics of
the programming language and related tools. This condition
will be satisfied by the correct implementation of a
protected virtualized environment.

II. METHODOLOGY

Evaluation of student program solutions consists of two
separate tasks: the evaluation of execution results based on
defined test cases, and static analysis of the source code,
i.e., checking the existence of certain lexical structures.

Different methods can be applied during the automatic
evaluation [4]: unit tests, sketching synthesis and error
statistical modeling, peer-to-peer feedback, test cases with
random input data, and pattern matching.

A. Test cases methods

To develop a software solution evaluation service, a
combination of the test case method with random input data
and the pattern-finding method was chosen [5]. Each test
case contains predefined input and expected output data.
The pattern-finding method was used in the context of
finding the required lexical structures. The examiner
defines the test-ordered pair of input-output data in the
format of the standard input that will be used during the
execution of the program and the standard output that will
be compared with the actual output of the executed
program. Based on the coincidence of these two data, the
number of points will be awarded.

B. Static analysis

Static analysis of the source code is a check of syntactic
rules. Each rule is defined as the presence of specific lexical
constructions and the number of occurrences within the
source code. For each task, the examiner defines a set of
rules related to a specific request. Any non-compliance
with the rules is punished with a defined point penalty,
which is deducted from the final sum of points for that task.

C. Service requirements for automated evaluation of

software solutions

There are several basic requirements of the service for
the automated evaluation of software solutions:

 The examiner defines the test tasks: question text,
name, test cases, grading rules, and the test taker
receives feedback on the number of points earned and
the reason for possibly deducted points.

 The examiner defines rules and test cases for each
task.

 The examinee transfers his solution to the evaluation
service in the form of a compressed file. The service
creates a directory structure that meets the project
pattern. During the exam, the examinee can upload
his current solution several times to check the
evaluation results of the currently solved tasks. At the
end of the exam, the user confirms that his solution
application is final and receives a complete detailed
analysis of the scoring of each task.

D. Proposed solution architecture

The software solution includes a server web service that
communicates with a database and a protected virtualized
environment. The client communicates with the server by
sending HTTP (Hypertext Transfer Protocol) requests
according to the defined routes of the server web service.

REST (Representational State Transfer) is a program
architecture model that contains a certain set of restrictions
[6]. A system that implements REST is called RESTful and
is based on the client-server concept. The RESTful system
does not store states (stateless) and is characterized by
uniform accessibility to every resource through HTTP
requests. The backend service passes data from the request
component to the evaluation component for code
execution. The code execution component, communicating
with the virtualized environment, translates the source code
and if the translation is successful, executes the program
and monitors the success of the implementation of these
two phases. The server service stores all assessment
requests in a relational database, which also stores data on
defined exams, tasks, test cases, and rules.

E. Virtualized environment

There are more tools and techniques available to create
a protected isolated environment. The most popular
techniques are creating virtual machines and creating
containers. The main difference between them is the
hypervisor used by virtual computers. The hypervisor
manages virtualized resources and guest operating systems,
thus creating virtual machines with running complete
operating systems and associated processes. Unlike virtual
machines, starting a container does not require the
existence of a hypervisor but a container engine installed as
part of the host operating system.

Using containers with the necessary libraries within the
container [7] makes it possible to start application processes
independently of the host operating system. Starting
containers is less time-consuming than starting virtual

MIPRO 2023/CE 699

machines [6], [7] thanks to the lack of a hypervisor and the
absence of starting the entire virtual operating system.

To ensure the processing of submitted files without
consequences for the host computer, during the operation
of the service, it is necessary to repeatedly destroy and
recreate the virtualized environment. For ease of
management, a protected virtualized environment is
implemented using containers. Large community support,
ease of installation and configuration, and many libraries
for integration with programming languages and working
environments [8], [9], [10], [11], [12], [13] to implement a
virtualized environment for the code execution component,
Docker was chosen. Each container is started with the help
of a Docker image, a file that contains instructions for
creating a Docker container and at the same time represents
the basis for the file system that will be located inside the
container. Each image has multiple layers that speed up the
construction process. The Docker image used to start the
virtualized environment in which the program code will be
compiled and executed is g++:4.9, which contains the GNU
C++ compiler g++.

After successfully starting a container using the docker
start command, the container is ready to receive commands.
If the execution time of the program inside the container
exceeds the given time limit, the docker stop command will
stop the container and its processes. After stopping the
container, the container is deleted with the docker rm
command so that it does not occupy resources
unnecessarily (Figure 2).

F. Implementation of code evaluation services

In the data layer, a database is used to store relevant data
about exams and assessment results. PostgreSQL was
chosen as an open-source tool with strong community
support and many libraries available for integration with a
variety of programming languages and frameworks.

One exam can have one or more tasks. Each task has
one or more test cases and one or more rules. For test cases,
a text is defined that represents the standard input and the
text of the standard output that will be compared with the
actual output of the program. One or more rules can be
defined for each task. Each rule contains a textual identifier,
a description, and a regular expression of the check, the
number of points that are deducted if the specific rule is not
satisfied, and the number of occurrences of the lexical
construct described by the rule. During the evaluation, a
record is created that contains information about the year,
semester, and exam, as well as information that indicates
the status of the submission of the solution. An individual
exam task contains the evaluation status waiting, which is
true if the task has been fully evaluated. Each evaluation
creates records of the result of checking test cases and rules.

To implement the business layer, the Go programming
language and the Echo framework were used, which allows
the creation of a REST web server service with all the
necessary functionalities, such as controllers for accepting
requests and defining processing methods, authentication
filters, and logging management [8], [9], [10], [11]. Web
service consists of two main packages: Executor and
Marker. Inside the Executor package is the
executor.Executor structure and associated methods for

executing code. Each of these methods serves as a wrapper
for calls made by the Docker agent. Some of the important
methods are: ContainerList, ContainerStart,
CopyToContainer, ContainerExecAttach, ContainerKill,
and ContainerRemove [8], [9], [10], [11]. The Marker
package defines structures and methods for evaluating
individual tasks. The verification of test cases is carried out
by calling methods for compiling and executing code from
the Executor package, while the verification of rules is
carried out by checking the existence of, certain lexical
constructions in the source code using regular expressions.
After the evaluation is complete, the results are stored using
the Store package method.

Two values must be sent within the body of the initial
POST request at the /submission path: exam_id, which
represents the integer value of the universal identifier of the
exam stored in the database, and project_zip, which is a
compressed file of the MS Visual Studio Solution folder
and related projects. If some value is missing, an HTTP
response with the status code 400 Bad request is returned
to the user. If the exam with the submitted identifier is not
found, the status code 404 Not found is returned. If the
request received the correct parameters, the compressed file
is extracted, and the extracted files are stored on the server's
file system. A directory is then created whose keys are the
names of the tasks, and whose values are a list of files
associated with that task, which includes a file with the
extension cpp and optional files with the extension txt and
csv used in the tasks.

The first step is to create a record that is the result of the
assessment, and the user is returned an HTTP response with
the status code 201 Created and the universal identifier of
the result of the submission of the solution,
submission_result_id. The method is not terminated after
creating the HTTP response but continues with the
evaluation. First, by calling the CompileCheck method, the
possibility of translating the source code of the solution is
checked. If the source code cannot be translated, the
evaluation stops, and 0 points are awarded.

This is followed by verifying the test cases by executing
them with the passed input data and verifying the expected
and actual output data. When starting execution, as well as
when compiling source code, a timer is started. Using the
lexical construct select of the Go programming language,
the process is stopped if the counter ends before the
program is executed or compiled.

Rule checking is performed by finding patterns in the
text of the source code using regular expressions [14], [15],
e.g., to find the definition of a for loop, the regular
expression is used: [^a-zA-Z0-9_]for [\t\n]*\(. The search
is for matching text that contains for loop definition.

The evaluation process can take a long time, so the
system evaluates solutions simultaneously using the
goroutines of the Go programming language. Each
goroutine is active while the assessment is in progress and
ends with the recording of the obtained points. The client
application continuously send a GET request to the
/submission/:id path to display the grading status and
current scoring results. This process can be stopped when
the waiting attribute of the JSON response body is set to
false (Figure 1).

700 MIPRO 2023/CE

The initial POST request to the path /submissions
returns the HTTP response that contains submission
identifier. The submission_result_id attribute is a universal
identifier of the entity that represents the result of the
evaluation of the solution, and it must be sent as a parameter
when calling the GET request according to the path
/submission/:id where id is the value of the
submission_result_id attribute (Figure 3).

Next, the GET request to the specified path returns a
JSON response in which the waiting attribute is specified
for each task, which indicates the status of the evaluation of
the solution:

{"id": 101,

 "created_at": "2022-05-

18T22:58:12.814289+02:00",

 "exam": {

 "id": 1,

 "name": "Midterm Exam 1"},

 "final": false,

 "task_results": [{

 "id": 62,

 "waiting": true,

 "compiles": true,

 "scored_points": 0,

 "message": "",

 "task_id": 1,

 "test_case_results": [{

 "id": 41,

 "passed": true}],

 "test_cases_passed": 1,

 "rule_results": [{

 "id": 22,

 "satisfied": false,

 "points_affected": 0.5}],

 "rules_satisfied": 0}]}

III. RESULTS

The basic application of the presented solution is in the
automated correction of exams from the course
Programming. The course contains six learning outcomes;
therefore, it is essential that the system can support the
definition of rules and conditions that the student needs to
meet the learning outcomes.

The conditions are:

 defining different types of variables

 defining for, while and do while loops

 defining methods with different signatures

 defining and using structures

 defining and using pointers and references

Figure 1. Solution evaluation process

 defining and using ifstream and ofstream file
management types.

A. Example of use for assessing program solutions

During the exam, each student creates his own program
solutions based on the assigned tasks. The following tasks
were selected as an example of using the proposed solution:

1. It is necessary to ask the user to enter two whole
numbers and print their sum. (2 points)

2. It is necessary for the user to load the word and print
"yes" if it is a word, and print "no" otherwise.
(3 points)

3. Ask the user to enter the height of an isosceles triangle
and to print the corresponding triangle using the star
symbol "*". An example of a printout
(4 points):

*

MIPRO 2023/CE 701

Figure 2. Docker container life cycle

Students use the MS Visual Studio 2022 Integrated
Development Environment and select the Empty project
form, thus defining the project that will contain the source
code of the solution to the first task. In addition to the
project, the student also defines a solution that represents a
group of projects connected to one exam solution. The next
step is to create projects for each remaining task.

Students can check the current solution while solving
the exam tasks. The folder created by the project should be
compressed and transferred to the evaluation system as
such. After finishing the evaluation, an overview of the
scoring details is available (Figure 4 for the first task). The
source code of the solution is translated, and all test cases
and rules are satisfied, and the solution of the task achieves
the maximum number of points. Figure 5 shows the scoring
details of the second task. Although the solution is
translatable and satisfies all the rules for the existence of
lexical constructions, the source code contains a logic error
that results in only one test case being satisfied. The source
code of the solution of the third task cannot be translated
and the task achieves 0 points. The program execution
procedure and the checking of rules and test cases were not
carried out (Figure 6).

Figure 3. Communication between the client application
and the server service

Figure 4. First task evaluation results

Figure 5. Second task evaluation results

Figure 6. Third task evaluation results

B. Example of use with a system for grading sql

solutions

Analogous to the process of evaluating C++ program
solutions, it is possible to evaluate SQL solutions using the
system for evaluating SQL solutions previously developed
at the College of Algebra [16]. Parameters marked with the
value of the Content-Type header set to multipart/form are
submitted to the system via an HTTP request on the path
/submissions: config with the task settings, and sql with the
SQL file of the student's solution.

Task settings define rules that indicate the presence of
certain lexical constructions of SQL queries, such as
keywords SELECT, FROM and ORDER BY, as well as the
course of evaluation if a certain rule is not respected. The
SQL file contains the solutions of several tasks that are
separated within the source code by the comment mark --
LOXTY, where X is the sequence number of the learning
outcome, and Y is the sequence number of the task.

After successfully receiving the request, the SQL
solution evaluation system performs a static analysis of the
code as well as checking whether the SQL query returns the
necessary rows defined by the task. A database container is
used when executing SQL queries. If the specified
container is not started, a command is given to start the
container, within which an SQL script is then executed to
create a database filled with the initial data needed to test
the student's solution.

The JSON response body for the HTTP POST request
on the path /submissons contains a universal identifier of

702 MIPRO 2023/CE

the solution that needs to be sent during each subsequent
HTTP GET request on the path /submissions/:id. The
response to the specified HTTP request contains the
number of points achieved for each task, as well as
feedback on the reasons for possibly deducted points.

C. Disadvantages of the proposed system

Naive manual testing of the system revealed the
shortcomings of the developed solution. The name of each
task within the student's solution must explicitly match the
defined task name within the exam. The output data in the
standard output stream must explicitly match the expected
output data.

An improvement to such an approach would be to
implement metrics when checking task names and output
data. An example is the Levenshtein distance [8], [17].
When checking the test cases, it would be necessary to
define the permissible value of the Levenshtein distance
between two strings of characters to avoid deducting points
due to random errors. For example, it is possible to define
a Levenshtein distance of 1, if one wants to ignore a
misspelled letter in the solution.

Static analysis of the presence of lexical constructions
is performed using regular expressions, which are not an
optimal tool when it comes to performance. Due to their
limitations, regular expressions are not the most suitable
tool for finding specific lexical constructions [14], [15].
The development of a parser that creates an abstract syntax
tree from the given source code, and whose search is more
precise than using regular expressions would improve
proposed system.

The presented solution has a monolithic architecture,
and two microservices should be developed instead: for
code execution and for evaluating the solution. With such
an approach, the system would enable a larger set of
functional requirements for different test tasks. Such an
agnostic architecture would more simply implement a
system for evaluating software solutions of other
programming languages within a common virtualized
environment.

IV. CONCLUSION

The developed grading system allows examiners to
automate grading. The key parts of the code and commands
are analyzed, and the use of the developed system is
described along with the corresponding textual description
and graphical representation of the user interface. The
proposed architecture enables the development of different
types of clients that can call the developed system. After
analyzing the examples of the developed system use,
shortcomings were observed, and possible system upgrades
were suggested.

REFERENCES

[1] J. Hollingsworth, “Automatic graders for programming classes,”
Commun. ACM, vol. 3, no. 10, pp. 528–529, Oct. 1960, doi:
10.1145/367415.367422.

[2] H. Z. Dosilovic and I. Mekterovic, “Robust and Scalable Online
Code Execution System,” in 2020 43rd International Convention on
Information, Communication and Electronic Technology
(MIPRO), Sep. 2020, pp. 1627–1632, doi:
10.23919/MIPRO48935.2020.9245310.

[3] I. Mekterovic, L. Brkic, B. Milasinovic, and M. Baranovic,
“Building a comprehensive automated programming assessment
system,” IEEE Access, vol. 8, pp. 81154–81172, 2020, doi:
10.1109/ACCESS.2020.2990980.

[4] H. Aldriye, A. Alkhalaf, and M. Alkhalaf, “Automated grading
systems for programming assignments: A literature review,” Int. J.
Adv. Comput. Sci. Appl., vol. 10, no. 3, pp. 215–221, 2019, doi:
10.14569/IJACSA.2019.0100328.

[5] A. Z. Javed, P. A. Strooper, and G. N. Watson, “Automated
generation of test cases using model-driven architecture,” Proc. -
Int. Conf. Softw. Eng., 2007, doi: 10.1109/AST.2007.2.

[6] R. T. Fielding, “Architectural Styles and the Design of Network-
based Software Architectures,” 2013.

[7] D. Merkel, “Docker: lightweight Linux containers for consistent
development and deployment,” Linux Journal, vol. 2014, no. 239.
p. 2, 2014, Accessed: Jan. 26, 2023. [Online]. Available:
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel
14.pdf.

[8] T. Combe, A. Martin, and R. Di Pietro, “To Docker or Not to
Docker: A Security Perspective,” IEEE Cloud Comput., vol. 3, no.
5, pp. 54–62, 2016, doi: 10.1109/MCC.2016.100.

[9] R. Zhang, A. M. Zhong, B. Dong, F. Tian, and R. Li, Container-
VM-PM Architecture: A Novel Architecture for Docker Container
Placement, vol. 10967 LNCS. Springer International Publishing,
2018.

[10] T. Bui, “Analysis of Docker Security,” 2015, [Online]. Available:
http://arxiv.org/abs/1501.02967.

[11] A. M. Potdar, D. G. Narayan, S. Kengond, and M. M. Mulla,
“Performance Evaluation of Docker Container and Virtual
Machine,” Procedia Comput. Sci., vol. 171, no. 2019, pp. 1419–
1428, 2020, doi: 10.1016/j.procs.2020.04.152.

[12] P. Gkikopoulos, V. Schiavoni, and J. Spillner, “Analysis and
Improvement of Heterogeneous Hardware Support in Docker
Images,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2021, vol. 12718 LNCS, pp. 125–142, doi:
10.1007/978-3-030-78198-9_9.

[13] N. Vermeir, “Application Architecture,” Introd. .NET 6, pp. 259–
273, 2022, doi: 10.1007/978-1-4842-7319-7_9.

[14] P. Bille and M. Farach-Colton, “Fast and compact regular
expression matching,” Theor. Comput. Sci., vol. 409, no. 3, pp.
486–496, Dec. 2008, doi: 10.1016/J.TCS.2008.08.042.

[15] A. Backurs and P. Indyk, “Which Regular Expression Patterns Are
Hard to Match?,” Proc. - Annu. IEEE Symp. Found. Comput. Sci.
FOCS, vol. 2016-December, pp. 457–466, Dec. 2016, doi:
10.1109/FOCS.2016.56.

[16] M. Fabijanic, G. Dambic, and B. Fulanovic, “A novel system for
automatic, configurable and partial assessment of student SQL
queries,” 2020 43rd Int. Conv. Information, Commun. Electron.
Technol. MIPRO 2020 - Proc., pp. 832–837, 2020, doi:
10.23919/MIPRO48935.2020.9245264.

[17] L. Yujian and L. Bo, “A normalized Levenshtein distance metric,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1091–
1095, 2007, doi: 10.1109/TPAMI.2007.1078.

MIPRO 2023/CE 703

