
Windows Admin GUI Model for Learning

PowerShell Commands

D. Tuličić*, D. Delija*, G. Sirovatka**, M. Mrkoci**

*Visoka škola za informacijske tehnologije, Zagreb, Hrvatska

**Tehničko veleučilšte u Zagrebu, Zagreb, Hrvatska

dtulicic@vsite.hr, ddelija@tvz.hr, gsirovatka@tvz.hr, mmrkoci@tvz.hr

Abstract This paper presents the development of a

platform for the education of system engineers with the aim

of insight into detailed data about computers under the MS

Windows operating system. The application is based on the

ideas of IBM's SMIT (System Management Interface Tool)

interface for AIX systems, where standard commands are

used through a pre-coded semi-graphical working

environment. The developed application uses PowerShell

commands and is primarily focused on the security aspects

of system administration.

Keywords Windows - PowerShell, educational application,

information security;

I. INTRODUCTION

This paper presents the results of a master's thesis [1]
in which an educational software tool was developed as a
proof of concept. Even for systems like Microsoft
Windows, modern system administration still relies on the
skillful and mindful use of command line utilities (CLI).
While Windows is based on a graphical user interface
(GUI) for ordinary users, for any kind of professional
system administration, a command line tool called
PowerShell is used. However, from a learning point of
view, transitioning from GUI to CLI can be an unusual
and challenging path for an average student. To ease this
situation and aid learning and task performance, a tool that
acts as a safe wrapper around CLI commands with a GUI
or semi-GUI interface can be used. If designed and built
properly, such a tool has additional advantages. CLI
commands are executed through scripts written by
seasoned administrators and system programmers. These
scripts act as a safe environment around CLI tools,
managing arguments, options, inputs, outputs, results, and
errors, and all actions are logged and provided with
detailed help data and manual pages.

An operating system (OS) is a software program that
manages all the other programs and resources on a
computer. It acts as an interface between the hardware of
the computer and the applications that run on it. In other
words, it controls how the computer's hardware interacts
with software and users. Examples of operating systems
include Microsoft Windows, macOS, and Linux [6]. In the
context of the operating system, a system administrator is
someone responsible for managing and maintaining a
computer system, including its hardware, software, and
network infrastructure. They are typically responsible for
tasks such as installing and configuring software,
monitoring system performance and security,

troubleshooting issues, and performing backups and data
recovery.

The educational software tool described in the text is
designed to help students learn how to perform some of
these tasks using command line utilities, which are
commonly used by professional system administrators.

Modern system administration still depends on the
skillful and mindful use of command line utilities (CLI)
even for such systems as Microsoft Windows. Windows
are based on a graphical user interface (GUI) for ordinary
users but for any kind of professional system
administration a command line tool, PowerShell is used.
From a learning point, it is an unusual path with a lot of
obstacles for an average student. The students, the future
system administrators start with GUI tools and then go
into CLI with the growth of expertise and complexity of
tasks to perform.

To ease that situation and help learn and perform tasks
it is possible to use a tool that is a safe wrapper around
CLI commands with GUI or semi-GUI interface. Such a
tool has additional advantages if is designed and built
properly, for example, CLI commands are executed
through scripts written by seasoned administrators and
system programmers.

The result of this approach is that students can perform
serious system administration tasks with confidence,
without damaging the system, and with the ability to see
the correct syntax and procedures to use CLI. Such an
approach to system administration already exists in some
older commercial operating systems like IBM AIX, where
there is a "System Management Interface Tool" (SMIT)
[2] with the same functionality and purpose. As many
security tasks are performed by system administrators,
particularly data collection required for forensic analyses
in incident response situations, it is sensible to create and
test SMIT-like tools in the Windows environment,
oriented mostly towards forensic data collection tasks.

Many ideas have already been explored using mainly
PowerShell or a combination of Python and PowerShell.
There are several notable works that are worth
mentioning, such as "A Comparison of PowerShell and
Python for Systems Administration" by Thomas Rayner
and Michael Schneider. This paper compares the use of
PowerShell and Python in systems administration and
offers valuable background information. Additionally,
Timothy Warner's "Designing a PowerShell-based System
Administration Framework" investigates the design and
implementation of a PowerShell-based framework for
systems administration.

646 MIPRO 2023/CE

System administrators can also use the same tool to
obtain information or supervise the system. The
application is divided into several parts, from basic
commands to more advanced commands such as getting
information from networks, hardware, hard drives, and
processes within the Windows environment. To
implement this idea in the Windows philosophy and
environment, CLI will run under the Windows PowerShell
Integrated Scripting Environment (ISE), while an
auxiliary application called AutoPlay Menu Builder
(APMB) is used for the automated use of CLI commands
and provides a basis for the command execution.

Although this project may seem simple in scope and
purpose, it is too complex for one student to develop.
Therefore, the first step was to build a working GUI
prototype to prove the ability to interface scripting and
GUI environment on Windows, which are both specific in
their implementation and not Posix-like or typical
business environments where such tools are usually
implemented. This first step of implementation is
described in [1].

Figure 1. Main toolbar line in the application
presetting the top menu, where an area of tasks can be

chosen. (author's work).

This paper describes the process of developing an
admin GUI application, including the tools and methods
used to create the GUI. The GUI ADMIN modules and
their functions will be described in detail, along with the
underlying CLI commands in PowerShell. Finally, the
admin GUI app will be presented, and a roadmap for its
future development will be outlined.

II. TOOLS USED

A. PowerShell

PowerShell is a mixture of a command line, a
functional programming language, and an object-oriented
programming language [3]. It first appeared in 2006 as a

replacement for various previous tools. As a tool, it is
based on different languages like Python, C#, SQL, Tcl,
and Puppet, with a strong resemblance to VMS CLI. The
intention is to make PowerShell widely accepted, so it is
ported on various other operating systems like macOS
10.12 and higher, Ubuntu 14.04, Debian 8.7+, Fedora 25,
and CentOs 7. The first versions were written in the .NET
Framework, while the new versions were written in the
.NET Core. This intended portability makes it possibly a
very useful forensic platform. Open-source software
called PowerShell Core has also been released.

To implement proof-of-concept simple and complex
cmdlet bar code commands representing the .Net class are
used. It is important to note that cmdlets can use scripts,
and the same scripts can be incorporated into modules.

With full implementation system administrators can
perform tasks at remote locations but also locally because
through enabled full access to Windows Management
Instrumentation (WMI) and Component Object Model
(COM) components tasks can be performed locally and
remotely if needed.

B. Autoplay menu builder

The AutoPlay Menu Builder utility is used as a basis
for application development. It enables the automatic
execution of the PowerShell code in such a way that code
is integrated into an executable script with the .exe
extension. Implementing PowerShell code does not
require programming experience, but all operations are
done as drag and drop. There are security features to
unauthorized prevent changes. The application supports
Unicode standardization and various formats like JPG,
PNG, BMP, and GIF, and it can implement video content,
adobe reader, and other formats. It also supports a large
font base.

MIPRO 2023/CE 647

C. ISESteroids

The environment (ISE) tool is built into the Windows
operating system while The ISESteroids module is a
commercially available addition that allows the
encapsulation of PowerShell code into a self-contained
executable. This module is not free but can be used for ten
days without any restrictions. It provides many useful
features in controlling the security and behavior of
PowerShell code, like the application type in which code
will be embedded, shell console behavior and user
interaction, application signing, etc.

D. The development process

In the development and testing process, administrative
tasks were chosen as a starting point, because of the
importance of these tasks, if there is some serious
misconception it is best to see them on the most important
elements. Administrative tasks can be broadly separated
into general system administration and operating system-
specific tasks. This organization leads to three areas

1. basic commands for system admin support and
advanced system monitoring;

2. MS Windows monitoring and MS Windows process
monitoring;

3. hardware monitoring, disk monitoring, and network
monitoring.

Because of the module functionality, each area is
implemented as two or more subsets of commands. This
organization is presented on the main screen of the tool
"Catalog", where administrative tasks are grouped into
seven different submenus, as it is shown in Figure 1.

For each chosen area tasks were defined, and
appropriate commands were drafted. From this point,
scripts were tested and prepared for integration.

After initial debugging and testing, there was an
extended set of functional tests to explore the usability of
the idea.

III. INTRODUCTION TO THE APPLICATION “EDUCATIONAL

TOOL FOR SYSTEM ADMIN MONITORING “

The "Educational tool for system admin monitoring"
application serves as a basis for system administrators to
analyze, verify, and monitor operating systems. Also, it
helps beginners in learning new commands and
understands PowerShell’s working environment. The
application presents commands and information security
aspects and a more transparent organization.

Each module presents the collection of information in
a different way depending on the command that is
predefined during application development (Figure 1).
The modules are:

• Basic commands for system admin support,

• MS Windows Monitoring

• Hardware monitoring

• MS Windows process monitoring

• Disk monitoring

• Network monitoring

• Advance system monitoring

Each module or chapter is presented as a list of
commands called "Command", followed by "Description,"
and an overview of commands or their execution.

The overview of commands or execution of
commands is displayed in "CMD view" format, which is
the basic standard text view, then "Tabular view" and
"HTML View" which uses HTML elements to display the
results, as it is presented in Figure 2..

Figure 2 List of all commands on the system, cmdlet
output. Each command is available as menu entry

(author's work)

A. Module “Basic commands for system admin

support”

This module will show some basic commands used for
system manipulation and administration, how to display
the date and time, create a new text record, display records
from a text file, and retrieve and create an XML file.

Figure 3 List off all basic commands for the system
administrator support. (author's work)

As an example, Get-Command interface is presented.

648 MIPRO 2023/CE

1) Get-command module
Command: Get-Command

Synopsis: Displays all commands that are integrated
on the local computer.

Description: Through this command, it is possible to
get all command types as an alias, function, and Cmdlet
commands. Results are presented in Figure 3.

Figure 4 Windows product key as output (author's
work)

Outputs: list of all available commands is printed.

In this module there are also other implemented
commands:

 Get-Date – to get the system date

 Get-Content – to get file content

 Set-Content – set file content

2) Information about computer
Command: Get-WmiObject -query "select * from

SoftwareLicensingService"|Select
OA3xOriginalProductKey,Version,
PSComputerCommand

Synopsis: This command finds the Windows key,
computer name, and version.

Description: In this command, as we can see, it used
the predefined commands "SoftwareLicensingService"
and "OA3xOriginal ProductKey" to get the licensed key
from the operating system.

Outputs: Windows product key as it is presented in
Figure 4, it is in native blue background for PowerShell.

3) Hardware monitoring
Command: „Get-WmiObject Win32_Bios; Get-

WmiObject win32_baseboard;Select-Object Banklabel,
Manufacturer,Configuredclockspeed,Devicelocator,Capac
ity,Serialnumber|Get-WmiObjectwin32_physicalmemory;
Get-ComputerInfo OsArchitecture,OSName“

Synopsis: Show information about the motherboard
and the series and model.

Description: It can be seen that "Get-WmiObject" is
used here to access digital information. With "Select-
Object" we define which objects we want to display.
Furthermore, the essential elements required can be seen,
such as "GetComputerInfo OSName," and
"OsArchitecture."

Outputs: are presented in Figure 5.

Figure ‘5 Information about the motherboard. All
available info from components itselfs and registry data

(author's work)

IV. FURTHER WORK

Since it is too complex to develop a whole application,
it was decided to start with testing if the basic idea and
needed elements are working appropriately and securely.

Examples listed here show that the concept is working
and can be used for the intended purpose. There is a list of
important functionalities to be implemented in the same
test and proof fashion. As AIX SMIT [4] was used as a
raw model additional elements needed are

 Database to store scripts, templates, and rules

 Templates for PowerShell code to be used

 Additional cmdlets for interfacing with OS and
GUI

 Detailed logging facility

 Installation method

 Help subsystem

 Documentation is needed for development, usage,
testing, and installation.

All these elements are essential for such a tool to be
successfully and securely used, especially in incident
response / digital forensic data acquisitions situation.

PowerShell as the interpreter is well suited to be sued
as an interface and glue to keep all elements together. To
avoid usual security problems with scripts with maximum
defensive scripting and well-defined templates for the
code it is possible to create secure scripts.

A. Database

The database is the backbone of such a tool, it stores
code to be executed – commands, rules, and relations
among this code, both with information about errors, and
arguments [2]. Since the tool has to be as open as possible
because of other OS support, the database should be one
of the available lightweight databases with multiplatform
support, also with a good interface to various
programming languages [9]. The SQLite is very well
suited for such a task and fulfills all these requirements

MIPRO 2023/CE 649

well, even though it is in extensive use on Windows from
various applications and system tools [5].

B. Command templates

To keep reasonable system security and ease of
maintenance command templates can be used in designing
shell scripts, in this case, PowerShell commands. In such a
way shape of the code, input, and command arguments
can be standardized and tested before being consumed by
the script itself. With this approach each script before
execution is checked for validity and if approved it is
executed.

C. Logging facility

Logging is essential for keeping records about events
on the system and through this for general system security
and reliability. As there are different logging approaches
on the Windows operating system and other operating
systems supported now by PowerShell, it is crucial to
have a reliable and uniform interface to all logging
subsystems included, to Windows logging g facility, and
to syslog found on Unix-based systems.

Data that should be logged have to include:

 commands executed and their unique ids

 timestamps related to the start and stop of the
commands

 arguments and inputs of the commands

 results and outputs of the commands

 debugging information if necessary

 account information under which commands were
executed.

All this will provide an additional level of security and
support for chain-of-evidence especially if security
features like signing codes are used.

Because of the huge difference between Windows and
syslog, it is possible that an additional log system should
be used, where some raw data like outputs can be stored
[2]. This is quite a common situation, especially on the
Windows platform itself, where additional information
about system events and history are stored in plain text
files, while structured records are still logged into the
windows logging system. The USB history is one such
example. The abovementioned database can also be used
as a facility to store logs, to avoid log data being too easily
exposed to possible mishandling or change.

D. Utility and Interface cmdlets

To provide an efficient interface among PowerShell
scripts executing tasks and the rest of the system and tool
interface layer is needed, which in combination with script
templates provides the required functionality. In essence,
the current scripts presented in the examples in this paper
require an additional wrapper layer that will provide an
interface to the database and the system, while providing
an environment for script execution, logging of results,
presenting and preserving outputs, and all other tasks.

For example, while a task is selected through GUI,
parameters, inputs, and environment data are generated for

the code retrieved from the database, all this interaction is
done by interface cmdlets and related utilities. The same is
for handling script execution, controlling errors and
results, and storing and logging generated data and script
results. In essence, this layer behaves like a secure
wrapper around scripts that change and modify the system
keeping all tested and well-behaved.

It is important to notice that through such an approach,
e.g., executable code stored in the database structures and
then executed by another layer of shell code, it is possible
to simplify maintenance and control of the code, resulting
in more security. From a system security point of view, it
adds a layer of security usually missing when system
administration is done troughs scripts.

An additional benefit of such an approach is the ability
to see code on request, which will run with all its
arguments and variables set up, which gives huge insight
into scripting practices and methods for novice system
administrators, or anyone using such a system.

Development of such PowerShell code requires high
programming skills and fluency in object programming,
the Windows operating system, and secure coding, so it is
obvious why such code was left to be implemented in
further steps of development.

E. Installation Method

Installation and maintenance methods are usually
overlooked in the case of system administration scripts, it
is often done as simple archive extraction because of
expected simplicity and “private” tools being distributed
among machines. This is a huge security risk often
overlooked. To avoid such a situation strict packaging into
standard installation formats should be done. Since
PowerShell is now available on Linux and on native
Windows systems both ranges of installation packages
have to be created. Again, this is a complex task same as
developing the utility and interface cmdlets layer and that
is why it was not implemented in the proof-of-concept
tool. The current implementation is the simplest form for
installation and executable which is transportable among
systems.

The full implementation of the installation method will
be chosen at the end of tool development, based on how
other parts of the system will be implemented and how
that will influence the whole tool [8]. To clarify this, the
whole thing depends on the database where code and
many other components are stored, so installation of the
tool must incorporate the reliable installation of the
database, its content, and interface layer as a set of
packages. The same situation is with maintenance and
upgrades where it is not yet clear which methods of
updating and maintenance should be used, this heavily
depends on the method of installation.

F. Help and Documentation

The help and documentation subsystem is an
important part, which should be developed into a resilient
and platform-independent format. Since there is a direct
link between commands and help information and
documentation, scripts should be developed with unique
ids to ease connecting them with help files and
documentation [8]. Scripts id can be based on various

650 MIPRO 2023/CE

identification systems, important is that each script has a
unique id in each identification system, while the script
still can have more than one id.

Relations among various parts of help and
documentation should also be kept in the database, related
to the code itself. The utility layer and GUI should be able
to access help data and documentation straight from the
tool itself during work, also a script code with its
arguments and parameters should be visible through the
GUI as part of the help system. This will also facilitate
learning because the user can see the code which runs and
how it interacts with the system [7].

V. CONCLUSION

As can be seen, using PowerShell and its scripts can
significantly automate system processes to obtain timely
information or information about a business information
system. Also, the application is designed to enable the use
of PowerShell commands quickly and easily, both in
learning and education and in forensic research and
analysis, which allows faster case resolution.

The application showed more straightforward
commands such as calling only one command where an
insight into the basics was obtained to complex scripts

with multiple lines of code. In the following, the
application is ready for possible upgrades and extensions
to add more complex scripts to obtain quality information
and design in the display of the same.

REFERENCES

[1] M. Mrkoci: “An educational tool for system admin monitoring
using the PowerShell in the Windows environment”, Zagreb
University of Applied Sciences, 2022.

[2] S. Segura: System Management Interface Tool (SMIT), IBM
Redbooks, IBM, 30.11.2000

[3] C. Dent: “Mastering Windows PowerShell Scripting”, Packt
Publising, 2019.

[4] IBM AIX documentation

[5] G. Allen, M. Owens: The Definitive Guide to SQLite, Apress,
2010.

[6] G.Silberschatz,,Galvin, P.,Gagne, G.: “Operating System
Concepts” (10th ed.). John Wiley & Sons, 2018

[7] E.Holscher: “The Art of Documentation for Software Engineers”,
Pragmatic Bookshelf, 2020

[8] W.Horton: “Developing Online Help for Computer Applications”,
Wiley Year: 1991 (revised in 2003)

[9] J.Kreibich: "Using SQLite: Small. Fast. Reliable. Choose Any
Three.", O'Reilly Media, 2010

MIPRO 2023/CE 651

