A Domain-Specific Language Implementation
Framework for C++ Based on S-expressions

Aleksandar Stojanovié¢*, Silvio Plehatif, Zeljko Kovageviét
Zagreb University of Applied Sciences, Zagreb, Croatia
aleksandar.stojanovic @tvz.hr* silvio.plehati@tvz.hrT Zeljko.kovacevic@tvz.hri

Abstract—Domain-specific languages (DSLs) are languages
designed and implemented for a specific application domain.
Designing and implementing such languages is hard because
they require both domain-specific and language implemen-
tation knowledge. However, they offer its users substantial
gains in productivity because they consist of constructs that
directly represent domain-specific concepts.

The absence of extensible and easy-to-use domain-specific
language frameworks for C++ has made it difficult for
developers to build such languages. Designing syntax, imple-
menting parser, the interpreter and its runtime environment
is time consuming, error prone and generally requires lots
of work. In this paper we present a C++ framework for
building domain-specific languages with fixed syntax based
on S-expressions, but avoiding the strict parenthesization
required by them. The framework offers two advantages
over implementing a domain-specific language “by hand”:
1) the syntax is already built into the framework’s scripting
language so users do not need to design and implement their
own, and 2) the framework provides the execution environ-
ment where users just need to implement domain-specific
commands by extending the command set of the interpreter.
This approach not only streamlines DSL development but also
demonstrates versatility across various domains, as shown by
our examples.

Keywords—domain-specific language, framework, scripting,
S-expressions, C++

I. INTRODUCTION

Domain-specific languages (DSLs) are languages de-
signed for specific purpose [1]. They include a wide
variety of languages: markup languages like HTML, data
exchange languages like XML and JSON, database query
languages like SQL, programming languages like R and
Prolog, syntax specification languages like EBNF and
many others. Compared to general-purpose programming
languages, the benefits of domain-specific languages are
many: they are more expressive for their domain of usage,
they are easier to use for domain specialists and, conse-
quently, users of such languages are more productive. A
good example is SQL: querying a database is much more
straightforward with a language that supports relational
data model directly than searching and joining tables in a
general-purpose programming language like C or Python.

Implementing a DSL from scratch, especially a domain-
specific programming language, can be time consuming
and error-prone without special knowledge and skills in
language implementation. A DSL can be implemented in
various ways, depending on the application domain and
requirements. Most common are [1]: interpreter, compiler,

MIPRO 2024/BIS-BDP

preprocessor, embedding, extensible compiler or inter-
preter, commercial tools, and hybrid approach. In this paper
we focus on extensible interpreter approach. We chose this
approach for the following reasons: 1) to allow users of the
framework to create DSLs by extending the interpreter with
new capabilities, using a fast general-purpose programming
language (C++), 2) to allow users of DSLs created with the
framework to use them as stand-alone languages, ensuring
a broad and flexible application scope, and 3) to enable
integration of DSLs created with the framework into C++
programs.

In this paper we introduce an extensible C++ frame-
work for implementing DSLs similar to typical dynamic
scripting languages. The basic idea behind the framework
is to allow users to create such a DSL without having
to implement it from scratch, but still get reasonable
flexibility and performance. To achieve this, the framework
provides the following:

« A scripting language that serves as the basis for DSLs.
The syntax of the language is based on S-expressions
to make its use as simple and as flexible as possible
where every construct has the same syntactical struc-
ture.

o The API to the interpreter and the runtime environ-
ment that allows users to implement a wide variety
of extensions, from simple commands like arithmetic
operations to commands for flow control, conditional
evaluation, pattern matching and others.

Although other programming languages (like Python)
can also be extended in C/C++, they only support exten-
sions at the library level, not the core language level. For
example, adding a swirtch-like statement to Python would
require modifications to its grammar, parser and possibly
the runtime system. In contrast, our framework is designed
to allow extensions at both, the core language and the
library levels (see section III).

At the time of this writing we are not aware of any
similar frameworks for C++. There are some more recent
tools like PowerShell that provide somewhat similar capa-
bilities for .NET, like adding new commands through the
base class and embedding scripts in a .NET program.

The rest of the paper is organized as follows. Section II
provides an overview of related work in this area. Section
IIT describes the framework and its scripting language in
more detail. Section IV provides a few short examples of

283

simple domain-specific languages defined using the frame-
work. Section V discusses results from measuring perfor-
mance of the framework’s scripting language execution
and compares it to some other similar languages. Finally,
section VI completes the paper with the conclusion.

II. RELATED WORK

An excellent overview of various DSL aspects is given
in [1]-[3]. They cover basic principles of how to design,
develop and implement a DSL. Implementation approaches
are covered in detail in textbooks like [4]-[10]. Specifying
the syntax of a language, developing the parser, interpreting
or compiling the source code are demonstrated through
numerous examples.

There are a number of tools available for implementing
domain-specific languages in C++, like ANTLR [11],
YACC [12], and Boost.Spirit [13]. They could be roughly
divided into two categories: preprocessors and parser gen-
erators. The former is often based on template metapro-
gramming [14], [15].

A. Preprocessors

In [16] a C++ compiler extension is introduced which
enables the integration of domain-specific languages di-
rectly within a C++ codebase, eliminating the necessity
to segregate the DSL source code from the C++ code. In
[17] the authors discuss how domain-specific languages
embedded in C++ enable users to create domain-specific
code that is both easy to write and safe, while maintaining
high performance. This approach provides access to the
extensive low-level capabilities of C and C++, along with
the vast array of libraries in the C/C++ ecosystem. The
paper [18] introduces an embedded domain-specific lan-
guage in C++ for representing stream parallelism, utilizing
standard C++11 attribute annotations. In [19] a framework
for building domain-specific languages in C++ using type-
based multi-stage programming is proposed. In [20] an
extension layer for C++ is described that supports multi-
stage generative metaprogramming. It allows programmers
to write compile-time metaprograms using the same lan-
guage constructs as normal programs, and to share design
and code reuse between them.

Each of these approaches utilizes C++ as the core
component for their DSL, either by translating the DSL
into C++ or by augmenting C++ with specific features to
support the DSL. While these approaches yield higher per-
formance compared to our framework, they also introduce
a significant dependency on C++. This strong coupling
necessitates that users possess a certain level of C++
expertise to effectively engage with the DSL. In contrast,
our framework is designed to enable users to use DSLs
without being tied to any particular programming language,
eliminating the need for C++ knowledge among end users.
The prerequisite for C++ expertise is confined exclusively
to those who are developing DSLs within our framework,
thereby broadening accessibility and simplifying the user
experience.

284

B. Parser Generators

Parser generators exist since the early days of Unix.
YACC (Yet Another Compiler-Compiler) [12] is a tool that
generates parsers in C code, based on LALR grammar as
input. Another similar, but more modern and capable tool,
is ANTLR (ANother Tool for Language Recognition) [11].
It can generate parsers in many languages based on LL(k)
grammars.

Compared to our framework, parser generators represent
a more limited solution for DSL implementation. While
they efficiently create parsers based on the language’s
grammar, they fall short by not supplying essential com-
ponents required to execute DSL source code, such as
the interpreter and the runtime environment. This partial
approach contrasts with our framework’s holistic strategy,
which encompasses the full spectrum of DSL execution
needs.

III. THE FRAMEWORK

The main purpose of our framework is to allow users
to define new commands in the framework and access
those commands from the built-in scripting language. The
goal is to provide as much flexibility for DSL creators as
possible, without them having to know the details of the
framework itself. Users implement their DSLs by defining
new domain-specific commands as classes or structs that
inherit from a base class provided by the framework. The
base class contains the API to the interpreter and the
runtime environment to provide access to various facilities
such as symbol tables, the abstract syntax tree nodes
and evaluation of source code fragments. After adding a
new command to the runtime environment, the command
becomes available through the framework’s scripting lan-
guage. This is illustrated in Fig. 1.

New commands can be added in two ways, by either
1) defining new subprograms (functions) in the scripting
language itself, or 2) implementing new commands in C++
at the framework level. The first approach is simpler for
the DSL user, but suffers from several drawbacks:

« Since the scripting language is interpreted, it may lack
acceptable performance (for applications where that’s
important).

o Certain capabilities are not provided in the scripting
language (like low-level access to various computer
resources, specific algorithms and/or libraries, usage
of advanced programming facilities like threads, pro-
cesses, GPU processing, etc.).

o Defining commands with domain-specific control flow
is not (currently) possible. For example, implementing
a selection statement similar to if is not possible
without access to the framework’s API.

For these reasons, the framework is intentionally de-
signed to align with approach (2). However, this specific
approach has its own drawbacks: it necessitates a compre-
hensive understanding of C++, the framework’s API, and
some insight into its internal mechanisms.

MIPRO 2024/BIS-BDP

framework level -
interpreter —_—

abstract syntax tree base class Command

i

parser

user level

scripting language

user command in C++
source code

Fig. 1: Architecture of the DSL implementation framework for C++.

Listing 1: The main part of the EBNF for the scripting language
(productions for symbol, string, double, int and bool are not shown).

1 block = statement, {statement};

2 statement = command,("|", statement | ";");
3 command = parameter, {parameter};

4 parameter = "{", block, "}" | symbol

5 | string | double | int | bool;

A. The Framework’s Scripting Language

The framework’s scripting language serves as user inter-
face to user-defined commands. The fundamental building
block of the scripting language is the command. Tech-
nically, commands are functions that can take zero or
more parameters and return a result. The basic form of
a command is

eval : {f p1 p2 ... pn} — result (1)

where f is either a command name or a command object
and pj, is command’s parameter (parameters are optional).
This forms an expression. Both f and pj; can either be a
constant or an expression.

The syntax in (1) is basically the S-expression notation
[21], but the framework supports some shortcuts to mini-
mize the number of curly braces: statements at the top level
are automatically placed inside curly braces and comma
can be used to avoid having to write curly braces in some
expression forms, like if, > n @ {return -n} instead of
if {> n @} {return -n}. There is no fixed semantics of
the language because it depends on how users implement
their commands.

The main part of the language’s grammar in EBNF
[22] is shown in Listing 1. The rules for symbol, string,
double, int and bool are trivial regular expressions and
are not shown in the listing. The advantage of this S-
expression-based syntax is consistency: every construct has
the same structure (including those for flow control, like
loops and conditional evaluation). This consistent syntacti-
cal structure makes it easier to define new commands in the
framework and, more importantly, allows the framework’s
scripting language interpreter to combine those commands
with other commands into more complex expressions.

Listing 2 shows a function for calculating the absolute
value of a number, written in the framework’s scripting
language. The syntactical structure of defining the function
abs is shown in Fig. 2. Note that a block of code can also

MIPRO 2024/BIS-BDP

Listing 2: Function abs in the framework’s scripting language.

1 fn abs n {
2 if {< n 0} {
3 return -n
4 } else {
5 return n
6 }
7%
| f ‘/abs“ n |[{
/ / ’ /4 if {<n o6} {
return -n
command first second } else {
name parameter parameter return n

third parameter 3

Fig. 2: Syntactical structure of command fn.

be an argument for a command parameter as shown for the
Jfn and if commands in listing 2 (see Fig. 2).

B. Defining New Commands

Commands like f, if, return and many others are already
defined in the framework to make the scripting language
usable out of the box. Those commands are defined in the
same way users would define their domain-specific or any
other commands.

Suppose we want to add a new command for calculating
the power of a number, call it pow, and use it like
pow <base> <exponent>. Listing 3 shows how a user
would implement such a command in our framework.
This command definition consists of the following: name
("pow", line 2), return type NUMBER (line 2), parameters
with their name and type (line 3), description (line 4),
and command functionality (function exec in line 6). The
name of the command is what users will type in the
scripting language to invoke the command. The return
type is necessary for the runtime to check in cases where
types need to match (when the result of one command
is an input to another). In the listing, the return type is
NUMBER, which means the function returns either an
integer or a double (the type information is stored in the
Value object). The Params object specifies the name and
type of parameters. Parameters can be accessed by that
name from the exec function, as seen in lines 7..8. The
description is used by another command that is part of the
framework to print useful information about a command
(like parameter information, return type and description).
The function exec is the implementation of the command
- what it does and what it returns as result.

After the new command object (the instance of class

Listing 3: Command for the power function.

struct Power
Power ()

: Command {

: Command{"pow"”, NUMBER, Params(this,
M(NUMBER, "base”), M(NUMBER, "exp")),

"Returns <base> to the power of <exp>."} {}

void exec(Valuex r, Params& p) override {
double n = pow(p[”"base”]->double_value,
p["exp”]->double_value);
set_result(r, n);

285

Listing 4: Using the pow command for binary-to-decimal conversion.

1 fn bin-to-dec a {

2 let n 0; let exp @

3 for i {- {count a} 1} -1 { # from high to low
4 let v {* {at a i} {pow 2 exp}}

5 set n {+ n v}; inc exp

6 }

7 return n

8 }

Listing 5: Command for the for-loop.

1 struct For : Command {

2 For() : Command{"for"”, ANY, Params(this,
3 M(SYMBOL, "ctrl-var”), M(INT, "from"),
4 MCINT, "to"), M(BLOCK, "body")),

5 "The for-loop."} { }

6

7 void exec(Value* r, Params& params) override {
8 Valuex var = params["ctrl-var"];

9 Valuex range_from = params["”from"];

10 Value* range_to = params[”to"];

11 Valuex body = params["”body"];

12 Value& control_var =

13 add_variable(var->text_value,

14 range_from);
15 Value body_result;

16 while (control_var.int_value <

17 range_to->int_value) {

18 execute_block(body->block_node,

19 &body_result);

20 if (return_flag_set()) {

21 set_result(result,

22 xget_return_value());

23 return;

24 }

25 ++(control_var.int_value);

26 }

27 set_result_nil(r);

28 }

29 3

Power) is added to the runtime environment, it will become
available in the scripting language and usable in combina-
tion with other commands. Listing 4 shows a function bin-
to-dec that converts a binary number given as an array of
bits to its decimal representation. The new pow command
is used in line 4.

As this example shows, users just need to specify what
the command’s input parameters and result are and the
framework handles everything else.

The Listing 5 shows a simplified implementation of
command for (used for looping). The main API calls are
shown in bold. Parameter values are obtained in lines 8..11.
The control variable is added to the symbol table in line
12. The looping is implemented by the while-loop in lines
16..26. The execute_block call executes the body of the
for-loop the number of times specified by the from and fo
parameters. In line 20 a check is made to see if the refurn
command was encountered inside the body of the for-loop,
in which case the execution stops and the result of the for-
loop is the result of the optional expression specified by
command return. After all iterations have been performed,
the execution stops and NIL is returned as the result of
command for.

This example demonstrates that the framework is flexible
enough to support implementation of more complex com-
mands like flow control, conditional evaluation and others.

286

Fig. 3: The abstract syntax tree for expression {for i @ {pow 2 4}
{print i}}.

C. The Execution Process

Before execution, the source code is passed to the
parser that creates the abstract syntax tree (AST) from
it. The AST is then used by the interpreter to evaluate
the expressions. To create the AST, the parser does not
require any commands to be defined. However, when the
interpreter begins the AST evaluation it will look for
commands used in the source code, so by that point they
must be added to the runtime environment. As an example,
for the expression {for i @ {pow 2 4} {print i}} the
parser creates the AST like the one shown in Fig. 3.

As the grammar in Listing 1 shows, there can be multiple
statements separated by "I" or ";", hence the STATEMENT
nodes (the "I" symbol is used for passing the result of one
expression to another, similar to pipes in shell languages
and the ";" separates multiple expressions on the same
line).

The interpreter basically performs left-to-right, depth-
first traversal of the AST. In Fig. 3, the leftmost child
of the node marked COMMAND is the command name,
while the rest of the children are command parameters.
After all command parameters are evaluated and assigned
to, the interpreter calls the exec method on that command
to get the result of the (sub)expression. In our example,
when the interpreter arives at node "SYMBOL: for" it
looks for command with the name "for" in the global
symbol table. When it finds it, it evaluates the parameters,
verifying that the types match what is specified in the
command’s constructor. The first and second parameters
of command "for" are constants of types SYMBOL and
INT, respectively; the framework supports additional types
like DOUBLE, NUMBER, BOOL, STRING, ARRAY,
DICT, FUNCTION, and BLOCK (the type NUMBER is
either INT or DOUBLE) and each Value object carries the
type information for a value it represents. For the third
parameter (the one named "to" in Listing 5) of type INT
the interpreter evaluates the subtree at the BLOCK node to
get the value for that parameter. The fourth parameter is of
type BLOCK so the interpreter does not evaluate that part
of the AST but instead assigns that node to the parameter.
This parameter is evaluated "manually” later in method
exec using execute_block (line 18) to execute the body
of the loop.

MIPRO 2024/BIS-BDP

Listing 6: DSL for querying CSV files.

1 var result {

2 select item price

3 from "prices.csv”

4 where {> price 100}
5}

6

cout result

Listing 7: DSL for generating simple SVG graphics.

1 svg "rect.svg” viewport width 200 height 200 {
2 var xc 10; var yc 10; var x 10; var y 2

3 for i @ 10 {

4 svg rect x xc y yc width 45 height 27

5 style "stroke: black; fill: beige;”
6

7

8

9

inc xc x; inc yc y; inc x 2; inc y 2
}
}

IV. DSL EXAMPLES

In this section we show a few short examples of how a
DSL can be designed using this framework. Due to limited
space we do not show full implementations, we just show
what they look like and briefly describe them. The previous
sections showed how new commands can be defined, so
here we focus on end user’s perspective, i.e. the language
aspects.

A. Data Processing DSL

Listing 6 shows a part of a small data access DSL.
The command name is select. The next two parameters
are names of CSV [23] file’s columns. The next parameter
is symbol from followed by a parameter containing the
file name. This is followed by another parameter, symbol
where, followed by a block containing the filtering condi-
tion. The symbols item and price are added to the symbol
table where they are assigned values from each row. Those
values are checked by the block after the where symbol.
If the block returns true the values for item and price are
included in the result.

B. DSL for Generating SVG

The next example shown in Listing 7 generates an SVG
[24] image, shown in Fig. 4, from the script. The command
svg takes the file name as the first parameter and SVG
XML instruction as the second parameter, followed by
other parameters, depending on the instruction. The last
parameter is the block with the script that generates the
SVG file inside the specified viewport. The command svg
rect ... in line 4 generates SVG instruction like <rect
x="10" y="10" width="45" height="27" style="stroke:
black; fill: beige;"/>.

C. Grammar Specification DSL

As another example, Listing 8 shows a simplified gram-
mar definition for S-expressions in a notation similar to

Fig. 4: Image generated by script in Listing 7.

MIPRO 2024/BIS-BDP

Listing 8: Grammar definition for S-expressions.

1 bnf symbolic-expressions {
expr = p-expr ! atom

p-expr = "(" operator exprx ")"
atom = NUMBER
operator = SYMBOL ! p-expr

command prompt
> parse symbolic-expressions "(x a (+ b c¢))”
10 <BOOL> T

2
3
4
5
6 3
7
8
9

Bubblesort and Prime numbers
B Bubblesort [Prime numbers

10
5 [
1.02
, [2.35] 279
0.1

Our framework PowerShell Lua

Seconds

Git Bash

Algorithm

Quicksort and Fibonacci
B Quicksort [l Fibonacci

m ﬁ
1
—
0.1 l m 0.49
0.017
a

PowerShell Lu

Seconds

Our framework Git Bash

Algorithm

Fig. 5: The execution speed of the framework’s interpreter compared to
PowerShell, Lua and Git Bash.

BNF. Command bnf takes the name of the definition as
first parameter and the block with grammar productions
as the second (the "!" symbol is used for separating the
alternatives). Command parse (not defined here, but also
part of the DSL) takes the grammar name as the first
parameter and a string containing an S-expression and
returns frue (T) if the S-expression is syntactically correct
or false (F) if it is not.

The examples presented demonstrate the versatility and
power of S-expression-based syntax in creating domain-
specific languages. The inherent simplicity and uniformity
of S-expressions offer a robust foundation for designing
DSLs that are both expressive and easy to parse.

V. RESULTS

This section shows performance measurements of the
framework’s scripting language interpreter compared to
three other scripting languages: Powershell [25], Lua [26]
and Git Bash [27]. The results are shown in Fig. 5t
Athough none of these languages are designed with the
same goals as our framework, our intention here is to
demonstrate that runtime performance of the framework’s
scripting language can be comparable to other similar
languages.

The algorithms used for measuring performance were
Quicksort (1000 elements), 30th Fibonacci number, Bub-

IThe performance was measured on a computer with Intel i7 processor
on 2.7 GHz, 32GB of RAM on a 64-bit Windows 10 operating system and
Microsoft C++ compiler v. 19.36.32532 (with optimization for speed).

287

blesort (2000 elements) and prime numbers in interval
1..100,000 [28], [29]. These algorithms were chosen to
measure the performance of function calls through re-
cursion (Quicksort and Fibonacci numbers) and iterative
execution (prime numbers and bubble sort). In all four
languages these algorithms were implemented in the same
way. The number of elements for all algorithms was
chosen so that each of these languages can execute them,
although in the case of 30th Fibonacci number Git Bash
could not finish within an acceptable time period (we
recognize that implementing Fibonacci recursively is not
practical in terms of performance; however, our objective
was to evaluate the efficiency of function calls across these
languages).

The results show that our framework has the perfor-
mance closest to that of PowerShell, significantly better
than Git Bash, but also significantly worse than Lua due
to differences in purpose and implementation.

Compared to our framework, PowerShell proved to be
faster for iterative algorithms, specifically for Bubble sort
where it was about four times faster, but significantly
slower for recursive algorithms: for Quicksort it was about
15 times slower, similarly for calculating the 30th Fi-
bonacci number. Function calls in PowerShell seem to take
significant time, but a deeper analysis of that system was
not performed here. This can also be seen in the algorithm
for prime numbers where PowerShell is a little slower.
Although this algorithm is not implemented recursively,
for each number in the given interval a function is called
that checks whether it is prime. This is in contrast to
the implementation of the Bubble sort algorithm, which
consists of two nested for loops and no function calls.

VI. CONCLUSION

In this study we introduced a comprehensive C++ frame-
work designed to facilitate the development of DSLs.
This framework provides a streamlined method for DSL
implementation, eliminating the complexities associated
with parser, interpreter, and runtime environment devel-
opment. Despite its numerous benefits, the framework is
not without its limitations. Primarily, it constrains users to
the syntax of S-expressions and certain functionalities may
prove challenging or unfeasible to implement. For instance,
developing a DSL that emulates the logic programming
paradigm of Prolog would be problematic due to the
framework’s inherent orientation towards imperative or
functional programming styles. However, as delineated in
Section 1V, the flexibility afforded by the S-expression-
based syntax enables the creation of a diverse array of
DSLs, underscoring the framework’s potential versatility
and utility in the domain of language development. This
underscores the framework’s value for researchers and
practitioners, offering a foundation for future innovations
and improvements.

REFERENCES

[11 M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4), 2005, DOI:

288

[2]

[3]

[4]

(3]
(6]
[7]
[8]
[9]

[10]
(11]
[12]
[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

(25]
[26]
[27]

[28]

[29]

10.1145/1118890.1118892.

L. Shen, X. Chen, R. Liu, H. Wang, and G. Ji. Domain-specific
language techniques for visual computing: a comprehensive study.
Archives of Computational Methods in Engineering, 10 2020, DOI:
10.1007/s11831-020-09492-4.

S. Sobernig. Variability support in DSL development, pages 33-72.
2020, ISBN: 978-3-030-42151-9.

A. Aho, J. Ullman, R. Sethi, and M. Lam. Compilers: principles,
techniques, and tools. Addison Wesley, 2nd edition, 2006, ISBN:
978-0321486813.

R. Mak. Writing compilers and interpreters: a software engineering
approach. Wiley, 3rd edition, 2009, ISBN: 978-0470177075.

R. W. Sebesta. Concepts of programming languages. Pearson, 11th
edition, 2016, ISBN: 1-292-10055-9.

R. Nystrom. Crafting interpreters. Genever Benning, 11th edition,
2021, ISBN: 0990582930.

A. Ranta. Implementing programming languages. College Publica-
tions, 2012, ISBN: 1848900643.

D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of
programming languages. MIT Press, 2008, ISBN: 978-0-262-
06279-4.

M. Boersma. Building user-friendly DSLs. Manning, 2024, ISBN:
1617296473.

T. Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf,
2nd edition, 2013, ISBN: 1934356999.

S. C. Johnson. YACC: Yet Another Compiler-Compiler. Technical
report, ATT Bell Laboratories, 1975.

boost.org. Boost.Spirit. https://www.boost.org/doc/libs/1_78_0/libs/
spirit/doc/html/index.html, 2011. Accessed: 2024-03-14.

D. Abrahams and A. Gurtovoy. C++ template metaprogramming:
concepts, tools, and techniques from Boost and beyond. 2004, ISBN:
0321227255.

D. Vandevoorde and N. M. Josuttis. C++ templates: the complete
guide. Addison-Wesley, 2017, ISBN: 0321714121.

H. Finkel, A. McCaskey, T. Popoola, D. Lyakh, and J. Doerfert.
Really embedding domain-specific languages into C++, 2020, DOIL:
10.1109/LLVMHPCHiPar51896.2020.00012.

S. T. Kozacik, E. M. Chao, A. L. Paolini, J. Bonnett, and E. J.
Kelmelis. Improving developer productivity with C++ embedded
domain specific languages. 1In Defense + Security, 2017, DOL:
10.1117/12.2264800.

D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes. An
embedded C++ domain-specific language for stream parallelism.
In International Conference on Parallel Computing, 2015, DOIL:
10.3233/978-1-61499-621-7-317.

A. Brahmakshatriya and S. Amarasinghe. Buildlt: A type-
based multi-stage programming framework for code generation
in C++. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 39-51, 2021, DOIL:
10.1109/CG0O51591.2021.9370333.

Y. Lilis and A. Savidis. Meta C++: An extension layer for
multi-stage generative metaprogramming. The Journal of Object
Technology, 18:1:1, 03 2019, DOI: 10.5381/jot.2019.18.1.al.

J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part 1. Communications of the ACM,
3(4):184-195, 1960, DOI: https://doi.org/10.1145/367177.367199.
ISO/IEC. ISO/IEC 14977:1996: Information technology - syntactic
metalanguage - extended BNF. [1](https://www.bibme.org/bibtex),
2008. Accessed: 2024-01-11.

Yakov Shafranovich. Common format and MIME type for comma-
separated values (CSV) files. RFC 4180, October 2005. Accessed:
2024-01-11.

World Wide Web Consortium. Scalable Vector Graphics (SVG)

1.1 (second edition). https://www.w3.org/TR/SVG/, 2011. W3C
Recommendation.
L. Holmes. PowerShell cookbook. O’Reilly, 4th edition, 2021,

ISBN: 109810160X.

R. Ierusalimschy. Programming in Lua. Lua.Org, 4th edition, 2016,
ISBN: 8590379868.

C. Newham. Learning the Bash shell. O’Reilly, 3rd edition, 2005,
ISBN: 0596009658.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to algorithms. The MIT Press, Cambridge, Massachusetts,
3rd edition, 2009, ISBN: 978-0262033848.

M. T. Goodrich, R. Tamassia, and M. H. Goldwasser. Data
structures and algorithms in Python. Wiley, 2013, ISBN: 978-1-
118-26844-2.

MIPRO 2024/BIS-BDP

