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Abstract — As the global volume of data continues to rise 

at an unprecedented rate, the challenges of storing and 

analyzing data are becoming more and more highlighted. 

This is especially apparent when the data are heavily 

interconnected. The traditional methods of storing and 

analyzing data such as relational databases often encounter 

difficulties when dealing with large amounts of data and this 

is even more pronounced when the data exhibits intricate 

interconnections. This paper examines graph databases as an 

alternative to relational databases in an interconnected Big 

Data environment. It will also show the theoretical basis 

behind graph databases and how they outperform relational 

databases in such an environment, but also why they are 

better suited for this kind of environment than other NoSQL 

alternatives. A state of the art in graph databases and how 

they compare to relational databases in various scenarios will 

also be presented in this paper. 
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I.  INTRODUCTION 

Relational databases have been the powerhouse of 
storing and analyzing data for decades. Their reliability, 
simplicity, and sheer power [1], but also a huge community 
of users have been an integral part of the reason why they 
have been at the top of their field for an unprecedented 
amount of time. At their core, relational databases are 
simply a series of previously defined tables which can 
usually be connected to other tables via foreign keys in 
order to retrieve related data. Those tables can then be used 
to store data and access it in order to gain certain 
knowledge. Although they have been steadily developing 
and advancing through the years, their core has always 
remained the same and that simple concept was enough to 
meet most of the market’s data needs for decades. 

However, in recent years, the Big Data revolution has 
been gaining huge popularity in the field of data 
management and with it a great number of new challenges 
have emerged. Most of these new challenges stem from the 
fact that there is a very large quantity of data that is seldom 
structured and that needs to be analyzed in order to make 
sense of it. Additionally, these data are often highly 
interconnected, which means that the entities within the 
database are very densely connected to each other. An 
example of highly interconnected data would be a social 
network where most users have a lot of friends, to which 
they are often connected in many different ways. Being 

able to handle that kind of interconnection will make 
analyzing the data much swifter and more efficient. Using 
more traditional tools like relational databases to deal with 
these new challenges is, of course, possible, but the 
problem with such attempts is that they are inefficient. The 
reason for that is because a large amount of interconnected 
data with lots of large tables often translates into a lot of 
join operations, which slow down queries significantly and 
are extremely resource expensive, which is something that 
should be avoided in a Big Data environment. In this 
context, graph databases present themselves as a viable 
solution for this kind of scenario. 

Graph databases are NoSQL (Not only SQL) databases 
that specialize in dealing with connections. They are based 
on graphs, which consist of nodes and the relationships that 
connect them [2]. They have been around for a few 
decades, in one shape or another, but only recently, with 
the emergence of cheaper hardware and growing amount of 
interconnected data, but also data in general, have they 
gained popularity. 

The rest of this paper is organized as follows. Section II 
describes the other NoSQL databases that exist and the way 
they handle large amounts of interconnected data. Graph 
databases, graph database management systems and graph 
database properties are defined in section III. Integrity 
constraints in graph databases are also included there. 
Section IV shows a state-of-the-art overview of graph 
databases being compared to relational databases, which 
includes analyzing various papers to determine how they 
compare to relational databases in different scenarios. 
Section V concludes this paper. 

II. ON NOSQL DATABASES AND HOW THEY HANDLE 

INTERCONNECTED DATA 

A. About NoSQL databases 

Although there is no commonly agreed upon definition 
of what exactly NoSQL databases are, there are a number 
of things many of these different definitions have in 
common [3]. NoSQL databases are commonly considered 
to be non-relational databases with flexible schemas which 
are capable of handling a large amount of load and data. 
They are known for their comparative advantages in 
performance and scalability over relational databases in a 
large number of scenarios, often offering a bigger variety of 
data types they can store. 
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Graph databases, which will be analyzed in detail in the 
next section of this paper, are considered one of four major 
types of NoSQL databases [4]. The other three are key-
value databases, column-oriented databases, and document 
databases. 

Key-value databases are the simplest of all NoSQL 
databases – they basically function as a dictionary. There is 
a key that is unique for each record and there can be any 
number of fields within it. The records are found within the 
database using this key. Key-value databases do not have 
an SQL-like language for querying data, which means that 
the key management has to be paid a lot of attention to. 
Some databases offer certain more sophisticated search 
capabilities in order to compensate for that. 

Column-oriented databases are the most similar to 
relational databases out of all NoSQL databases, but there 
are several crucial differences between those two because 
of which they are considered NoSQL databases. The 
biggest one of these differences is that column-oriented 
databases store records by column as opposed to a 
relational table which stores everything in rows. The upside 
of that is that accessing data is much faster and more 
efficient. One can only query a subset of columns which 
eliminates reading from columns that are not relevant. 
However, that also means that inserting data is going to 
take much more than it usually would, which is why these 
databases are used mostly for querying data. 

The data in document databases are stored within 
documents, not tables. These documents can be of different 
formats like XML, JSON or BSON. Each document has a 
unique key which is used to access it and a flexible schema 
which means that fields can vary between each document. 
That schema flexibility allows for the structure of a 
document to be changed at any time. They are very similar 
to key-value databases. In fact, they are something of an 
extension of them. They offer complex querying and more 
room for better record organization, but they sacrifice the 
simplicity of key-value databases in order to accomplish 
that.  

B. The drawbacks of different NoSQL databases 

handling interconnected data 

Each of the three databases mentioned in the previous 
section have reasons why they can be picked as an 
alternative to relational databases in a Big Data 
environment. The mentioned databases, however, start 
having issues when the data are heavily interconnected.  

Key-value databases are very simple in their design and 
handling relationships is not really what they are supposed 
to do. There are certain workarounds that can be done in 
order for them to handle relationships to other records [5], 
but they are not ideal for an interconnected environment as 
they can be slow and ineffective. 

Column-oriented databases are capable of handling 
relationships between data similarly to relational databases 
– by using joins, but that also means that they are 
struggling with similar problems. These join operations are 
faster than the joins in a relational database because of the 
way column-oriented databases function [6], but they will 
still take a lot of time to execute if there are a lot of them. 

Document databases also do not have any foreign keys 
in the traditional sense. Instead, they can, if they have a 
relationship to another document, either have other 
documents nested inside of them or they can hold a 
reference to another document [7]. Both of these 
approaches have certain drawbacks. Having whole 
documents inside of other documents can use a lot of 
memory space, especially if there are going to be a lot of 
connections. Having a reference to another document may 
be spatially more effective, but it would drastically increase 
query times because there would have to be as many 
lookup operations as there are references. 

After analyzing how the other three NoSQL database 
types handle interconnected data, it can be concluded that 
none of them can handle this type of data without 
compromising on either storage, query time, or both. Graph 
databases, on the other hand, were made specifically with 
interconnected data in mind and that is why they are the 
NoSQL database being proposed as an alternative to 
relational databases in an interconnected Big Data 
environment. 

III. GRAPH DATABASES 

A. Graph database features 

Graphs in graph databases consist of nodes and edges. 
The nodes represent individual records, while edges 
represent relationships between them. This makes adding 
or altering relationships or records very simple because 
changing the database schema is not required in order to do 
so. In fact, graph databases do not even have a schema – 
nodes and relationships can be added, changed, or deleted 
however and whenever the need for that arises. This is one 
of the reasons why graph databases are considered to be 
NoSQL databases. The absence of a schema also allows for 
easier data modeling and data management, which are 
incredibly important, especially in larger, more complex 
database systems. 

Another important feature of graph databases is 
performance. They are optimized for traversing nodes 
using relationships between them, which makes them excel 
at finding related data, which especially comes to shine in 
large data sets. 

Horizontal scalability is another graph database feature 
of significance. It allows for larger datasets and more 
complex data to be distributed among multiple nodes 
within a cluster [8], which makes querying much faster and 
more efficient. This feature allows scaling out to be much 
easier. 

Visualization is a feature that allows the user to 
visualize the data within a graph database using 
visualization tools which many graph database 
management systems have built in. Graphs are much easier 
to understand when visualized, so using such tools can 
greatly help users understand relationships between nodes 
and find connections that would otherwise be difficult to 
spot.  

A crucial feature to have in order to work with other 
types of systems is integration. Graph databases are able to 
be integrated with other systems like relational databases. 

278 MIPRO 2024/BIS-BDP



The relational database can, for example, be used for the 
purpose of data transaction, while the graph database can 
be used for the purpose of data analysis. 

B. Graph database management systems 

Graph database management systems (GDBMSs) are 
software tools which are used for working with graph 
databases. Each GDBMS provides unique features, which 
make them useful for different applications and use-cases. 
Before choosing a GDBMS, the user must consider their 
needs and choose one which meets those needs best. 

One of the most important differences between each 
GDBMS is based on which kind of graph data model they 
support. There are two main types of graph data models: 
the property graph data model and the RDF (resource 
description framework) graph data model. The RDF graph 
data model stores values in the form of triplets (subject-
predicate-object). Each subject and predicate have a unique 
URI (uniform resource identifier), which is used to 
reference them, while the object can be a URI or a literal, 
such as a person’s name. Such a standardized way of 
storing and referencing objects makes it easy to integrate 
the data from multiple sources, but it also has certain 
drawbacks, such as offering less flexibility and being less 
intuitive for users, which are addressed in the property 
graph data model. 

 The property graph data model [9] is much simpler 
than its counterpart – it uses local data identifiers to 
reference objects. These identifiers are mere strings which 
reference objects that are collections of different data 
structures which can point at other data structures. Such a 
structure makes working with graph database management 
systems that use it much easier by making everything 
simpler to understand and implement. Since property graph 
data models are a lot different than RDF data models, the 
user will have to choose which one of them they will use 
based on the user’s use case and their needs and resources. 

Another important difference between GDBMSs refers 
to graph languages, which are used to query the graph 
databases. While they may differ in syntax and are often 
tailored to specific GDBMSs, there are graph query 
languages, such as Cypher and Gremlin, which are 
compatible with multiple GDBMSs. 

C. Graph database integrity constraints 

Integrity constraints ensure that every record within the 
database follows a certain user-defined ruleset in order for 
the database to be in a consistent state [10]. These 
constraints are extremely important for databases that are 
used for data transactions. By defining integrity constraints, 
the user can be certain that inserting and altering records is 
not going to violate the defined ruleset. Adhering to this 
ruleset ensures that there are no issues during the data 
transaction process and to make sure that data quality is 
maintained, while also ensuring that there are no 
inconsistencies or errors in the data. 

The lack of schema in graph databases, although useful 
in many use cases, makes implementing integrity 
constraints substantially more difficult. The reason for that 
is that there is no predefined structure to enforce the 

constraints upon. The data can be more flexible and varied, 
so a more complex logic and mechanisms are required to 
validate and maintain data, such as creating an additional 
layer for validation. Using such a solution, however, will 
result in performance overhead, which can significantly 
increase transactional data query times. 

IV. STATE OF THE ART IN GRAPH DATABASES AND HOW 

THEY COMPARE TO RELATIONAL DATABASES 

This section will analyze various research papers that 
compare graph databases and relational databases in 
different aspects and scenarios to determine their relative 
strengths and weaknesses. The motivations behind the 
research, the methods used, and the conclusions made in 
the research papers will also be analyzed in order to 
provide a fuller picture of the papers in question. 
Additionally, the state-of-the-art findings will be 
summarized at the end of this section. 

A. Graph databases and relational databases 

comparison 

The authors of [13-17] compared graph databases to 
relational databases in various scenarios in order to see 
where graph databases perform better and where they do 
not. In order for the relational and graph databases to be 
comparable, usually one of them has to be converted into 
the other. Specifically, the data structures and the data itself 
have to be migrated. There are different approaches that 
can be used to do that, from manual mapping to using 
automated tools or even tools built into the GDBMS itself. 
Most of these tools convert relational tables and their 
columns into nodes and their properties, while the 
relationships between those nodes are created based on the 
foreign keys used in the tables. Depending on the schema 
complexity, manual mapping may be necessary after the 
automated mapping is completed in order to correctly 
convert some of the more complex data models. Although 
many different relational databases are present in the 
papers, most of the papers use Neo4j as the representative 
for graph databases because it is the most mature and 
commonly used graph database on the market [11; 12]. The 
papers in question are analyzed below. 

In [13] relational and graph databases were compared 
starting from database modeling. That part involved 
conceptualizing the data model for both the relational and 
graph database to be used in the rest of the paper. They 
concluded that both database types are equally simple and 
intuitive to model, with the graph data model being more 
flexible, which is an obvious consequence of graph 
databases being a NoSQL database. The next step was 
creating both databases and importing the data. The dataset 
used was generated in .csv format, which was easy to 
import to the relational database. The procedure for 
importing a .csv file into a graph database, however, took a 
lot more time than for the relational database. The last part 
of the paper consists of measuring two aspects: queries and 
modifications. The experiments were performed on a 
dataset that involves telecommunications, with all the steps 
and procedures being well explained and documented. The 
relational database in the experiments was implemented 
using Oracle DB, while Neo4j was used to implement the 
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graph database used. The comparison was made in terms of 
query execution time and the number of full database reads. 
The results show that, on the dataset used in the paper, 
relational databases are faster at executing queries that 
require less joins, but graph databases are a lot faster when 
the join count is higher. Data modification was also faster 
in the graph database and was constant, while the record 
modification in the relational database depended on the 
number of records, with the modifications taking longer, 
the more records there were. 

The authors of [14] compared graph databases to 
relational databases using a cluster of computers to conduct 
the experiments. The relational database used in the 
experiments was PostgreSQL, while the graph database 
used was Neo4j. There were several types of queries used 
for the benchmark and there were several queries for each 
query type. Each query was run five times, and the authors 
removed the highest and lowest value for each query while 
averaging the remaining three values to get the final result. 
The results show that the graph database had a similar 
performance to the relational database in most queries, but 
there were queries where it was a lot better. The authors 
made a recommendation in which scenario to use graph 
databases. The authors, however, did not include data 
insertion and modification into the benchmark query types, 
but they mention that and other issues as they assess the 
construct, internal and external threats to the validity of 
their own results. 

In [15], graph databases and relational databases were 
compared based on their performance on various query 
types with a greater emphasis on complex queries. 
MariaDB and MySQL were the relational databases used in 
the experiments, while Neo4j was the graph database used. 
Queries were run with and without indexes in order to see 
what difference using them makes on the performance. The 
indexes on relational databases made a huge difference in 
performance, but the indexes in the graph database did not, 
other than helping find the starting point in the graph faster.  
There was a large variety of queries used in the 
experiments and the authors have documented both the 
SQL queries and their graph query equivalents written 
using the Cypher graph query language. The results show 
that Neo4j outperformed the two relational databases in the 
simpler queries, but the relational databases were faster on 
more complex queries. The authors, however, conclude that 
it is not possible to generally state which one is better 
because it largely depends on the complexity of the data 
and individual queries. 

The author of [16] compared a graph database and a 
relational database on a social shopping application 
example. Neo4j was the graph database used in the 
experiments, while MSSQL was the relational database 
used. The dataset and the database modeling process, both 
for the relational database and graph database, were fully 
explained, and documented. The author provides graphical 
interpretations of the results of the graph database queries, 
and they claim that the graph database queries were faster, 
but they do not provide any numerical data to support that 
claim. As such, readers should take these results with 
caution until further evidence can be presented. Although 
the number of queries that were run in the experiments was 

limited, the author intends to add more query types and a 
larger variety of data to cover in their future work. 

Graph databases and relational databases were 
compared based on different query types in [17], with the 
query types including selection, recursion, aggregation, and 
pattern matching. Neo4j was the graph database used for 
the experiments, while MySQL was the relational database 
used. The authors included where to find the test database 
used and the SQL codes for the relational databases and 
their Cypher equivalents in order for the test results to be 
fully reproducible. The results of the experiments indicate 
that the graph database performs better than the relational 
database on every query type. On recursive query types, 
which involve querying relationships between nodes in a 
loop, the graph database was a hundred times faster than 
the relational database on each individual query. This was 
to be expected considering graph databases are a lot better 
in these types of queries than relational databases, but the 
graph database was vastly superior in almost every other 
query type as well. Although the experiments only included 
one dataset, the authors plan to add more tests and datasets 
in future research. 

B. Graph database integrity constraints implementation 

Integrity constraints are certainly an important factor to 
consider in order to determine if graph databases can be 
used as an alternative to relational databases.  They are a lot 
easier to implement in relational databases where the 
schema is known and predefined, as opposed to graph 
databases (or NoSQL databases in general) where it is not. 
The authors of [18-20] analyze the integrity constraints 
available in graph databases and discuss ways of 
implementing new ones. 

In [18], several types of integrity constraints are listed 
such as nullability, uniqueness and range constraints. The 
authors explain what they are, after which they analyze two 
graph query languages and the constraints they support: 
Cypher and Gremlin. Although there are not many integrity 
constraints available by default, the authors introduce two 
new approaches for how integrity constraints can be 
achieved: integrated and layered. The difference between 
the two is that the integrated approach changes the system’s 
source code in order to implement integrity constraints, 
while the layered approach creates a new layer where the 
constraints are implemented without changing the source 
code. Both ways are described in detail, together with the 
advantages and disadvantages of each of them. The authors 
also implemented their own node attribute uniqueness 
constraint in Neo4j’s Gremlin graph query language, and 
they describe in detail how they implemented it, together 
with the problems they had along the way and how they 
managed to overcome them. 

The authors of [19] and [20] discuss integrity constraint 
challenges in graph database modeling. Their focus was 
mostly on Neo4j’s integrity constraints and possibilities. 
They analyze the integrity constraints Neo4j has by default 
and list the constraints that can be useful to implement. The 
constraints that were implemented at the end were: 
uniqueness on one node’s attribute, uniqueness on several 
of the node’s attributes and mandatory property value. 
They managed to implement them by manipulating the 
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folders where the metadata for the nodes and relationships 
are being held. They proved that implementing these 
integrity constraints is possible, however, they conclude 
that they were only looking for a feasible way to implement 
them and that there is a lot of space for improvements. 

C. Graph data warehouses 

The authors of [22;23] focus on graph databases in data 
warehousing. Data warehouses are structures which store 
and manage a large amount of data from different sources 
in order to gain a detailed view of various parts of a 
business or the whole business itself [21]. Data warehouses 
are usually implemented using relational databases, but the 
authors of the beforementioned papers have come to the 
constatation that using relational databases for analytical 
processing in certain data warehouses focusing on 
interconnected data has its challenges, which are a direct 
consequence of using relational databases for implementing 
data warehouses. Most of these challenges are similar to 
the ones mentioned in this paper and include performance 
issues and overall ineffectiveness while using relational 
databases for working with heavily interconnected data. 

A state of the art in NoSQL graph data warehouses for Big 
Data social network analysis is captured in [22]. While 
explaining the drawbacks of using other NoSQL database 
types for creating a data warehouse for analyzing social 
networks and backing those claims up with research that 
has been done on those fields, the authors also introduce a 
new architecture for creating a NoSQL graph data 
warehouse for social networks. This architecture involves 
using document-oriented databases to store information, 
while using ETL tools to migrate parts of the network that 
require analysis into the graph data warehouse, which 
would be based on Social Graph Cubes – a concept 
proposed by the authors of [24]. Such architecture would 
be able to support OLAP (on-line analytical processing) on 
multidimensional social networks. This architecture, 
however, is not described in detail and is instead simply a 
concept which has been proposed by the authors. 

In [23], a set of rules is proposed in order to turn a 
multidimensional model into a graph data model, which 
can be used to implement a star-like and snowflake-like 
graph data warehouse. The authors included the hardware 
specifications of the machine used in order for the 
experiments to be fully reproducible. They used several 
datasets of varying size and several types of queries divided 
into several categories based on the complexity of the 
queries and the number of tables involved in the query. The 
graph data warehouse was implemented using Neo4j, while 
the relational data warehouse was implemented using 
MariaDB. The same query could not be used on both the 
data warehouses due to graph databases using their own 
query language, so after running one query, the equivalent 
of the query had to be written and run on the other type of 
data warehouse in order to compare the two. The 
summarized results of the research performed in this paper 
are shown in Table I. The query times in the table are based 
on the queries performed on the largest dataset, which 
comprises 7GB of data. However, it is important to note 
that the findings of the paper remain consistent across 
datasets of varying sizes. The results show that the graph 
data warehouse takes a lot more time to write records than 

the relational data warehouse, which is due to the fact that 
it has to create the nodes, but also the relationships between 
them. Additionally, it also performs worse on non-
hierarchical queries, which are queries that do not involve a 
specific hierarchical structure and are a more general type 
of query used for various data retrieval tasks. On the other 
hand, the results also show that the graph data warehouse 
performs a lot better on hierarchical queries, which are 
queries where the structure typically involves parent-child 
relationships, where each child record is linked to a parent 
record, and which can often be very complex to query. 
Additionally, the graph data warehouse also performs 
better on queries which are both hierarchical and 
cumulative, requiring aggregation in addition to the 
complexity of the hierarchical queries. The results 
generally show that the relational data warehouse performs 
better on queries which are less complex, while the graph 
data warehouse performs better on hierarchical and more 
complex queries. A surprising find in the research is that 
the star and the snowflake schema of both data warehouses 
show similar results throughout most of the experiments. 
The conclusion section of the paper notes that, based on the 
results of the experiments, it would be beneficial to use 
graph data warehouses for implementing OLAP (online 
analytical processing) systems and performing analytical 
queries in a data warehouse kind of structure. 

TABLE I.            SUMMARIZED RESULTS OF QUERIES USED IN [23] BASED 

ON QUERY TYPE 

 Relational data 
warehouse average 
query times [sec] 

Graph data warehouse 
average query times 
[sec] 

Query type Star 
schema 

Snowflake 
schema 

Star 
schema 

Snowflake 
schema 

Data insertion 
queries 

1052 1088 11391 14083 

Non-hierarchical 
queries 

8,92 9,01 83,12 83,39 

Hierarchical 
queries 

84,08 85,43 4,57 4,69 

Hierarchical and 
cumulative queries 

83,93 85,11 10,25 12,38 

D. Critical summary on the state-of-the-art findings 

There are many papers that compare graph databases to 
relational databases in one way or another. However, while 
comparing the relational database to the graph database, 
most of the research papers use Neo4j to implement the 
graph database used in the comparison. Although it is 
considered the most developed and complete GDBMS on 
the market, there should be more papers that focus on other 
GDBMSs in order to have a fuller picture of the whole 
field. Most papers’ results show that graph databases 
provide faster query results than relational databases in 
most of the analyzed cases. These cases usually involve 
datasets with highly interconnected data, which is 
something that puts them perfectly within the scope of this 
paper. The queries used, however, include mostly select 
queries and very few of them include insertion and update 
queries, which are equally as important and there should 
definitely be more emphasis on those aspects of querying in 
future works. 
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In order to analyze the comparability of graph databases 
to relational databases in the data transaction aspect, the 
options for enforcing integrity constraints in graph 
databases were examined. The analyzed papers show that 
further work is needed to improve the implementation of 
integrity constraints in the native GDBMSs. Although there 
are ways of getting around it by implementing the 
constraints on a higher application layer, this approach is 
usually less efficient than the constraints being built into 
the graph management system itself, which can potentially 
introduce significant performance overhead. 

Data warehousing focuses on storing and analyzing a 
large amount of data from different sources. The papers 
analyzed in this field show various ways and methods of 
transforming relational data warehouses into graph data 
warehouses, but only the authors of [22] offer concrete 
metrics that compare the two in various aspects. The 
authors show that graph data warehouses offer a selection 
of analytical tools that relational data warehouses cannot 
compete with in terms of speed and efficiency when 
working with a large quantity of interconnected data. Those 
tools, however, come at the price of slower data insertion. 
Due to the limited number of studies conducted in this 
field, it would be beneficial to conduct additional research 
in order to substantiate or refute the claims made in the 
papers in this field, but also find new ways of 
implementing data warehouses using graph databases and 
comparing them to relational data warehouses. 

V. CONCLUSION 

In this paper, an alternative to relational databases in an 
interconnected Big Data environment was given in the 
form of graph databases. The reasons for choosing graph 
databases were thoroughly explained, but the alternative 
NoSQL solutions and the explanations on how they would 
perform in such an environment were also given. An 
analysis of graph databases was provided which included 
defining the most important graph database features and 
types of graph database models. To provide a full picture of 
the state of the art in this field, several research papers 
including graph databases and their comparison to 
relational databases in various scenarios were analyzed. 

 With both the theory presented and the research papers 
analyzed, it can be concluded that graph databases are 
indeed a valid alternative to relational databases in an 
interconnected Big Data environment. The degree of their 
suitability, however, depends on the users’ needs from the 
database itself. The majority of the available data show that 
graph databases are faster in analyzing data in such an 
environment, however, the data also show that using graph 
databases for transactional purposes is slower and less 
effective. Although the research papers analyzed cover 
many scenarios and situations, further research is needed in 
order to fully understand the differences between graph 
databases and relational databases. In addition to that, even 
though they were not included in the scope of this paper, 
there are relational database management systems, which 
have certain graph database capabilities as part of their 
solution, such as PostgreSQL or Oracle DB, which could 
allow for the user to leverage the benefits of both relational 
and graph databases for certain use cases, potentially 
proving to be a good future research opportunity. 

REFERENCES 

[1] P Baxendale and E F Codd, “A relational model of data for large 
shared data banks,” Communications of the ACM, (1970), 377-387 

[2] Robinsson I, Webber J and Eifrem E, “Graph Databases: New 
Opportunities for Connected Data,” O’Reilly Media, (2015) 

[3] He C, “Survey on NoSQL Database Technology,” Journal of 
Applied Science and Engineering Innovation, (2015), 2(2) 

[4] Gupta A et al., “NoSQL databases: Critical analysis and 
comparison,” 2017 International Conference on Computing and 
Communication Technologies for Smart Nation, 2017, 293-299 

[5] Van Hieu D, Smanchat S and Meesad P, “MapReduce join 
strategies for key-value storage,” 2014 11th Int. Joint Conf. on 
Computer Science and Software Engineering 2014 (2014), 164-169 

[6] Abadi D, Madden S and Hachem N, “Column-stores vs. row-stores: 
How different are they really?,” Proceedings of the ACM SIGMOD 
International Conference on Management of Data, (2008), 967-980 

[7] Celesti A, Fazio M and Villari M, “A Study on Join Operations in 
MongoDB Preserving Collections Data Models for Future Internet 
Applications,” Future Internet 2019, Vol. 11, Page 83, (2019) 

[8] Fernandes D and Bernardino J, “Graph Databases Comparison: 
AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB,” 
DATA 2018 - Proceedings of the 7th International Conference on 
Data Science, Technology and Applications, (2018), 373-380 

[9] Angles R, “The property graph database model,” Alberto 
Mendelzon Workshop on Foundations of Data Management, (2018) 

[10] Codd E, “Data models in database management,” Proceedings of 
the 1980 Workshop on Data abstraction, Databases and Conceptual 
Modeling, ACM Press, (1980), 112-114 

[11] “DB-Engines Ranking - ranking of graph DBMS”, https://db-
engines.com/en/ranking/graph+dbms (accessed April 21. 2023). 

[12] “Best Graph DBs in 2023”, https://www.g2.com/categories/graph-
databases (accessed April 21. 2023). 

[13] Lazarska M and Lamch O, “Comparative study of relational and 
graph databases,” INFORMATICS 2019 - IEEE 15th International 
Scientific Conference on Informatics, Proceedings, (2019), 363-370 

[14] Macak M, Stovcik M and Buhnova B, “The Suitability of Graph 
Databases for Big Data Analysis: A Benchmark,” Proceedings of 
the 5th International Conference on IoT and Big Data (2020) 

[15] Kotiranta P et al., “Performance of Graph and Relational Databases 
in Complex Queries,” Applied Sciences 2022, Vol. 12, Page 6490 

[16] Uzunbayir S, “Relational Database and NoSQL Inspections using 
MongoDB and Neo4j on a Big Data Application,” Proceedings - 7th 
International Conference on Computer Science and Engineering, 
UBMK 2022, (2022), 148-153 

[17] Do T et al., “Query-based Performance Comparison of Graph 
Database and Relational Database,” ACM International Conference 
Proceeding Series, (2022), 375-381 

[18] Šestak M, Rabuzin K and Novak M, “Integrity constraints in graph 
databases - implementation challenges,” Proceedings of Central 
European Conference on Information Systems, (2016), 23-30, 2016 

[19] Pokorný J, Valenta M and Kovačič J, “Integrity constraints in graph 
databases,” Procedia Computer Science, (2017), 975-981, 109 

[20] Pokorný J, “Conceptual and database modelling of graph 
databases,” ACM International Conference Proceeding Series, 
(2016), 370-377, 11-13-July-2016 

[21] Gardner S, “Building the data warehouse,” Communications of the 
ACM, (1998), 52-60, 41(9) 

[22] Akid H and Ayed M, “Towards NoSQL graph data warehouse for 
big social data analysis,” Advances in Intelligent Systems and 
Computing, (2017), 965-973, 557 

[23] Akid H et al.,“Performance of NoSQL Graph Implementations of 
Star vs. Snowflake Schemas,” IEEE Access, (2022), 48603-48614 

[24] De Virgilio R, Maccioni A and Torlone R, “R2G: a Tool for 
Migrating Relations to Graphs,” Proceeding of the 17th 
International Conference on Extending DB Technology (2014) 

 

 

 

 

282 MIPRO 2024/BIS-BDP




