
Graph Databases: An Alternative to Relational

Databases in an Interconnected Big Data

Environment

Robert Pavliš

University of Zagreb, Faculty of Electrical Engineering and Computing

Unska 3, 10000 Zagreb, Croatia

robert.pavlis@fer.hr

Abstract — As the global volume of data continues to rise

at an unprecedented rate, the challenges of storing and

analyzing data are becoming more and more highlighted.

This is especially apparent when the data are heavily

interconnected. The traditional methods of storing and

analyzing data such as relational databases often encounter

difficulties when dealing with large amounts of data and this

is even more pronounced when the data exhibits intricate

interconnections. This paper examines graph databases as an

alternative to relational databases in an interconnected Big

Data environment. It will also show the theoretical basis

behind graph databases and how they outperform relational

databases in such an environment, but also why they are

better suited for this kind of environment than other NoSQL

alternatives. A state of the art in graph databases and how

they compare to relational databases in various scenarios will

also be presented in this paper.

Keywords – Graph Databases; Relational Databases;

NoSQL Databases; Interconnected Data; Big Data

I. INTRODUCTION

Relational databases have been the powerhouse of
storing and analyzing data for decades. Their reliability,
simplicity, and sheer power [1], but also a huge community
of users have been an integral part of the reason why they
have been at the top of their field for an unprecedented
amount of time. At their core, relational databases are
simply a series of previously defined tables which can
usually be connected to other tables via foreign keys in
order to retrieve related data. Those tables can then be used
to store data and access it in order to gain certain
knowledge. Although they have been steadily developing
and advancing through the years, their core has always
remained the same and that simple concept was enough to
meet most of the market’s data needs for decades.

However, in recent years, the Big Data revolution has
been gaining huge popularity in the field of data
management and with it a great number of new challenges
have emerged. Most of these new challenges stem from the
fact that there is a very large quantity of data that is seldom
structured and that needs to be analyzed in order to make
sense of it. Additionally, these data are often highly
interconnected, which means that the entities within the
database are very densely connected to each other. An
example of highly interconnected data would be a social
network where most users have a lot of friends, to which
they are often connected in many different ways. Being

able to handle that kind of interconnection will make
analyzing the data much swifter and more efficient. Using
more traditional tools like relational databases to deal with
these new challenges is, of course, possible, but the
problem with such attempts is that they are inefficient. The
reason for that is because a large amount of interconnected
data with lots of large tables often translates into a lot of
join operations, which slow down queries significantly and
are extremely resource expensive, which is something that
should be avoided in a Big Data environment. In this
context, graph databases present themselves as a viable
solution for this kind of scenario.

Graph databases are NoSQL (Not only SQL) databases
that specialize in dealing with connections. They are based
on graphs, which consist of nodes and the relationships that
connect them [2]. They have been around for a few
decades, in one shape or another, but only recently, with
the emergence of cheaper hardware and growing amount of
interconnected data, but also data in general, have they
gained popularity.

The rest of this paper is organized as follows. Section II
describes the other NoSQL databases that exist and the way
they handle large amounts of interconnected data. Graph
databases, graph database management systems and graph
database properties are defined in section III. Integrity
constraints in graph databases are also included there.
Section IV shows a state-of-the-art overview of graph
databases being compared to relational databases, which
includes analyzing various papers to determine how they
compare to relational databases in different scenarios.
Section V concludes this paper.

II. ON NOSQL DATABASES AND HOW THEY HANDLE

INTERCONNECTED DATA

A. About NoSQL databases

Although there is no commonly agreed upon definition
of what exactly NoSQL databases are, there are a number
of things many of these different definitions have in
common [3]. NoSQL databases are commonly considered
to be non-relational databases with flexible schemas which
are capable of handling a large amount of load and data.
They are known for their comparative advantages in
performance and scalability over relational databases in a
large number of scenarios, often offering a bigger variety of
data types they can store.

MIPRO 2024/BIS-BDP 277

Graph databases, which will be analyzed in detail in the
next section of this paper, are considered one of four major
types of NoSQL databases [4]. The other three are key-
value databases, column-oriented databases, and document
databases.

Key-value databases are the simplest of all NoSQL
databases – they basically function as a dictionary. There is
a key that is unique for each record and there can be any
number of fields within it. The records are found within the
database using this key. Key-value databases do not have
an SQL-like language for querying data, which means that
the key management has to be paid a lot of attention to.
Some databases offer certain more sophisticated search
capabilities in order to compensate for that.

Column-oriented databases are the most similar to
relational databases out of all NoSQL databases, but there
are several crucial differences between those two because
of which they are considered NoSQL databases. The
biggest one of these differences is that column-oriented
databases store records by column as opposed to a
relational table which stores everything in rows. The upside
of that is that accessing data is much faster and more
efficient. One can only query a subset of columns which
eliminates reading from columns that are not relevant.
However, that also means that inserting data is going to
take much more than it usually would, which is why these
databases are used mostly for querying data.

The data in document databases are stored within
documents, not tables. These documents can be of different
formats like XML, JSON or BSON. Each document has a
unique key which is used to access it and a flexible schema
which means that fields can vary between each document.
That schema flexibility allows for the structure of a
document to be changed at any time. They are very similar
to key-value databases. In fact, they are something of an
extension of them. They offer complex querying and more
room for better record organization, but they sacrifice the
simplicity of key-value databases in order to accomplish
that.

B. The drawbacks of different NoSQL databases

handling interconnected data

Each of the three databases mentioned in the previous
section have reasons why they can be picked as an
alternative to relational databases in a Big Data
environment. The mentioned databases, however, start
having issues when the data are heavily interconnected.

Key-value databases are very simple in their design and
handling relationships is not really what they are supposed
to do. There are certain workarounds that can be done in
order for them to handle relationships to other records [5],
but they are not ideal for an interconnected environment as
they can be slow and ineffective.

Column-oriented databases are capable of handling
relationships between data similarly to relational databases
– by using joins, but that also means that they are
struggling with similar problems. These join operations are
faster than the joins in a relational database because of the
way column-oriented databases function [6], but they will
still take a lot of time to execute if there are a lot of them.

Document databases also do not have any foreign keys
in the traditional sense. Instead, they can, if they have a
relationship to another document, either have other
documents nested inside of them or they can hold a
reference to another document [7]. Both of these
approaches have certain drawbacks. Having whole
documents inside of other documents can use a lot of
memory space, especially if there are going to be a lot of
connections. Having a reference to another document may
be spatially more effective, but it would drastically increase
query times because there would have to be as many
lookup operations as there are references.

After analyzing how the other three NoSQL database
types handle interconnected data, it can be concluded that
none of them can handle this type of data without
compromising on either storage, query time, or both. Graph
databases, on the other hand, were made specifically with
interconnected data in mind and that is why they are the
NoSQL database being proposed as an alternative to
relational databases in an interconnected Big Data
environment.

III. GRAPH DATABASES

A. Graph database features

Graphs in graph databases consist of nodes and edges.
The nodes represent individual records, while edges
represent relationships between them. This makes adding
or altering relationships or records very simple because
changing the database schema is not required in order to do
so. In fact, graph databases do not even have a schema –
nodes and relationships can be added, changed, or deleted
however and whenever the need for that arises. This is one
of the reasons why graph databases are considered to be
NoSQL databases. The absence of a schema also allows for
easier data modeling and data management, which are
incredibly important, especially in larger, more complex
database systems.

Another important feature of graph databases is
performance. They are optimized for traversing nodes
using relationships between them, which makes them excel
at finding related data, which especially comes to shine in
large data sets.

Horizontal scalability is another graph database feature
of significance. It allows for larger datasets and more
complex data to be distributed among multiple nodes
within a cluster [8], which makes querying much faster and
more efficient. This feature allows scaling out to be much
easier.

Visualization is a feature that allows the user to
visualize the data within a graph database using
visualization tools which many graph database
management systems have built in. Graphs are much easier
to understand when visualized, so using such tools can
greatly help users understand relationships between nodes
and find connections that would otherwise be difficult to
spot.

A crucial feature to have in order to work with other
types of systems is integration. Graph databases are able to
be integrated with other systems like relational databases.

278 MIPRO 2024/BIS-BDP

The relational database can, for example, be used for the
purpose of data transaction, while the graph database can
be used for the purpose of data analysis.

B. Graph database management systems

Graph database management systems (GDBMSs) are
software tools which are used for working with graph
databases. Each GDBMS provides unique features, which
make them useful for different applications and use-cases.
Before choosing a GDBMS, the user must consider their
needs and choose one which meets those needs best.

One of the most important differences between each
GDBMS is based on which kind of graph data model they
support. There are two main types of graph data models:
the property graph data model and the RDF (resource
description framework) graph data model. The RDF graph
data model stores values in the form of triplets (subject-
predicate-object). Each subject and predicate have a unique
URI (uniform resource identifier), which is used to
reference them, while the object can be a URI or a literal,
such as a person’s name. Such a standardized way of
storing and referencing objects makes it easy to integrate
the data from multiple sources, but it also has certain
drawbacks, such as offering less flexibility and being less
intuitive for users, which are addressed in the property
graph data model.

 The property graph data model [9] is much simpler
than its counterpart – it uses local data identifiers to
reference objects. These identifiers are mere strings which
reference objects that are collections of different data
structures which can point at other data structures. Such a
structure makes working with graph database management
systems that use it much easier by making everything
simpler to understand and implement. Since property graph
data models are a lot different than RDF data models, the
user will have to choose which one of them they will use
based on the user’s use case and their needs and resources.

Another important difference between GDBMSs refers
to graph languages, which are used to query the graph
databases. While they may differ in syntax and are often
tailored to specific GDBMSs, there are graph query
languages, such as Cypher and Gremlin, which are
compatible with multiple GDBMSs.

C. Graph database integrity constraints

Integrity constraints ensure that every record within the
database follows a certain user-defined ruleset in order for
the database to be in a consistent state [10]. These
constraints are extremely important for databases that are
used for data transactions. By defining integrity constraints,
the user can be certain that inserting and altering records is
not going to violate the defined ruleset. Adhering to this
ruleset ensures that there are no issues during the data
transaction process and to make sure that data quality is
maintained, while also ensuring that there are no
inconsistencies or errors in the data.

The lack of schema in graph databases, although useful
in many use cases, makes implementing integrity
constraints substantially more difficult. The reason for that
is that there is no predefined structure to enforce the

constraints upon. The data can be more flexible and varied,
so a more complex logic and mechanisms are required to
validate and maintain data, such as creating an additional
layer for validation. Using such a solution, however, will
result in performance overhead, which can significantly
increase transactional data query times.

IV. STATE OF THE ART IN GRAPH DATABASES AND HOW

THEY COMPARE TO RELATIONAL DATABASES

This section will analyze various research papers that
compare graph databases and relational databases in
different aspects and scenarios to determine their relative
strengths and weaknesses. The motivations behind the
research, the methods used, and the conclusions made in
the research papers will also be analyzed in order to
provide a fuller picture of the papers in question.
Additionally, the state-of-the-art findings will be
summarized at the end of this section.

A. Graph databases and relational databases

comparison

The authors of [13-17] compared graph databases to
relational databases in various scenarios in order to see
where graph databases perform better and where they do
not. In order for the relational and graph databases to be
comparable, usually one of them has to be converted into
the other. Specifically, the data structures and the data itself
have to be migrated. There are different approaches that
can be used to do that, from manual mapping to using
automated tools or even tools built into the GDBMS itself.
Most of these tools convert relational tables and their
columns into nodes and their properties, while the
relationships between those nodes are created based on the
foreign keys used in the tables. Depending on the schema
complexity, manual mapping may be necessary after the
automated mapping is completed in order to correctly
convert some of the more complex data models. Although
many different relational databases are present in the
papers, most of the papers use Neo4j as the representative
for graph databases because it is the most mature and
commonly used graph database on the market [11; 12]. The
papers in question are analyzed below.

In [13] relational and graph databases were compared
starting from database modeling. That part involved
conceptualizing the data model for both the relational and
graph database to be used in the rest of the paper. They
concluded that both database types are equally simple and
intuitive to model, with the graph data model being more
flexible, which is an obvious consequence of graph
databases being a NoSQL database. The next step was
creating both databases and importing the data. The dataset
used was generated in .csv format, which was easy to
import to the relational database. The procedure for
importing a .csv file into a graph database, however, took a
lot more time than for the relational database. The last part
of the paper consists of measuring two aspects: queries and
modifications. The experiments were performed on a
dataset that involves telecommunications, with all the steps
and procedures being well explained and documented. The
relational database in the experiments was implemented
using Oracle DB, while Neo4j was used to implement the

MIPRO 2024/BIS-BDP 279

graph database used. The comparison was made in terms of
query execution time and the number of full database reads.
The results show that, on the dataset used in the paper,
relational databases are faster at executing queries that
require less joins, but graph databases are a lot faster when
the join count is higher. Data modification was also faster
in the graph database and was constant, while the record
modification in the relational database depended on the
number of records, with the modifications taking longer,
the more records there were.

The authors of [14] compared graph databases to
relational databases using a cluster of computers to conduct
the experiments. The relational database used in the
experiments was PostgreSQL, while the graph database
used was Neo4j. There were several types of queries used
for the benchmark and there were several queries for each
query type. Each query was run five times, and the authors
removed the highest and lowest value for each query while
averaging the remaining three values to get the final result.
The results show that the graph database had a similar
performance to the relational database in most queries, but
there were queries where it was a lot better. The authors
made a recommendation in which scenario to use graph
databases. The authors, however, did not include data
insertion and modification into the benchmark query types,
but they mention that and other issues as they assess the
construct, internal and external threats to the validity of
their own results.

In [15], graph databases and relational databases were
compared based on their performance on various query
types with a greater emphasis on complex queries.
MariaDB and MySQL were the relational databases used in
the experiments, while Neo4j was the graph database used.
Queries were run with and without indexes in order to see
what difference using them makes on the performance. The
indexes on relational databases made a huge difference in
performance, but the indexes in the graph database did not,
other than helping find the starting point in the graph faster.
There was a large variety of queries used in the
experiments and the authors have documented both the
SQL queries and their graph query equivalents written
using the Cypher graph query language. The results show
that Neo4j outperformed the two relational databases in the
simpler queries, but the relational databases were faster on
more complex queries. The authors, however, conclude that
it is not possible to generally state which one is better
because it largely depends on the complexity of the data
and individual queries.

The author of [16] compared a graph database and a
relational database on a social shopping application
example. Neo4j was the graph database used in the
experiments, while MSSQL was the relational database
used. The dataset and the database modeling process, both
for the relational database and graph database, were fully
explained, and documented. The author provides graphical
interpretations of the results of the graph database queries,
and they claim that the graph database queries were faster,
but they do not provide any numerical data to support that
claim. As such, readers should take these results with
caution until further evidence can be presented. Although
the number of queries that were run in the experiments was

limited, the author intends to add more query types and a
larger variety of data to cover in their future work.

Graph databases and relational databases were
compared based on different query types in [17], with the
query types including selection, recursion, aggregation, and
pattern matching. Neo4j was the graph database used for
the experiments, while MySQL was the relational database
used. The authors included where to find the test database
used and the SQL codes for the relational databases and
their Cypher equivalents in order for the test results to be
fully reproducible. The results of the experiments indicate
that the graph database performs better than the relational
database on every query type. On recursive query types,
which involve querying relationships between nodes in a
loop, the graph database was a hundred times faster than
the relational database on each individual query. This was
to be expected considering graph databases are a lot better
in these types of queries than relational databases, but the
graph database was vastly superior in almost every other
query type as well. Although the experiments only included
one dataset, the authors plan to add more tests and datasets
in future research.

B. Graph database integrity constraints implementation

Integrity constraints are certainly an important factor to
consider in order to determine if graph databases can be
used as an alternative to relational databases. They are a lot
easier to implement in relational databases where the
schema is known and predefined, as opposed to graph
databases (or NoSQL databases in general) where it is not.
The authors of [18-20] analyze the integrity constraints
available in graph databases and discuss ways of
implementing new ones.

In [18], several types of integrity constraints are listed
such as nullability, uniqueness and range constraints. The
authors explain what they are, after which they analyze two
graph query languages and the constraints they support:
Cypher and Gremlin. Although there are not many integrity
constraints available by default, the authors introduce two
new approaches for how integrity constraints can be
achieved: integrated and layered. The difference between
the two is that the integrated approach changes the system’s
source code in order to implement integrity constraints,
while the layered approach creates a new layer where the
constraints are implemented without changing the source
code. Both ways are described in detail, together with the
advantages and disadvantages of each of them. The authors
also implemented their own node attribute uniqueness
constraint in Neo4j’s Gremlin graph query language, and
they describe in detail how they implemented it, together
with the problems they had along the way and how they
managed to overcome them.

The authors of [19] and [20] discuss integrity constraint
challenges in graph database modeling. Their focus was
mostly on Neo4j’s integrity constraints and possibilities.
They analyze the integrity constraints Neo4j has by default
and list the constraints that can be useful to implement. The
constraints that were implemented at the end were:
uniqueness on one node’s attribute, uniqueness on several
of the node’s attributes and mandatory property value.
They managed to implement them by manipulating the

280 MIPRO 2024/BIS-BDP

folders where the metadata for the nodes and relationships
are being held. They proved that implementing these
integrity constraints is possible, however, they conclude
that they were only looking for a feasible way to implement
them and that there is a lot of space for improvements.

C. Graph data warehouses

The authors of [22;23] focus on graph databases in data
warehousing. Data warehouses are structures which store
and manage a large amount of data from different sources
in order to gain a detailed view of various parts of a
business or the whole business itself [21]. Data warehouses
are usually implemented using relational databases, but the
authors of the beforementioned papers have come to the
constatation that using relational databases for analytical
processing in certain data warehouses focusing on
interconnected data has its challenges, which are a direct
consequence of using relational databases for implementing
data warehouses. Most of these challenges are similar to
the ones mentioned in this paper and include performance
issues and overall ineffectiveness while using relational
databases for working with heavily interconnected data.

A state of the art in NoSQL graph data warehouses for Big
Data social network analysis is captured in [22]. While
explaining the drawbacks of using other NoSQL database
types for creating a data warehouse for analyzing social
networks and backing those claims up with research that
has been done on those fields, the authors also introduce a
new architecture for creating a NoSQL graph data
warehouse for social networks. This architecture involves
using document-oriented databases to store information,
while using ETL tools to migrate parts of the network that
require analysis into the graph data warehouse, which
would be based on Social Graph Cubes – a concept
proposed by the authors of [24]. Such architecture would
be able to support OLAP (on-line analytical processing) on
multidimensional social networks. This architecture,
however, is not described in detail and is instead simply a
concept which has been proposed by the authors.

In [23], a set of rules is proposed in order to turn a
multidimensional model into a graph data model, which
can be used to implement a star-like and snowflake-like
graph data warehouse. The authors included the hardware
specifications of the machine used in order for the
experiments to be fully reproducible. They used several
datasets of varying size and several types of queries divided
into several categories based on the complexity of the
queries and the number of tables involved in the query. The
graph data warehouse was implemented using Neo4j, while
the relational data warehouse was implemented using
MariaDB. The same query could not be used on both the
data warehouses due to graph databases using their own
query language, so after running one query, the equivalent
of the query had to be written and run on the other type of
data warehouse in order to compare the two. The
summarized results of the research performed in this paper
are shown in Table I. The query times in the table are based
on the queries performed on the largest dataset, which
comprises 7GB of data. However, it is important to note
that the findings of the paper remain consistent across
datasets of varying sizes. The results show that the graph
data warehouse takes a lot more time to write records than

the relational data warehouse, which is due to the fact that
it has to create the nodes, but also the relationships between
them. Additionally, it also performs worse on non-
hierarchical queries, which are queries that do not involve a
specific hierarchical structure and are a more general type
of query used for various data retrieval tasks. On the other
hand, the results also show that the graph data warehouse
performs a lot better on hierarchical queries, which are
queries where the structure typically involves parent-child
relationships, where each child record is linked to a parent
record, and which can often be very complex to query.
Additionally, the graph data warehouse also performs
better on queries which are both hierarchical and
cumulative, requiring aggregation in addition to the
complexity of the hierarchical queries. The results
generally show that the relational data warehouse performs
better on queries which are less complex, while the graph
data warehouse performs better on hierarchical and more
complex queries. A surprising find in the research is that
the star and the snowflake schema of both data warehouses
show similar results throughout most of the experiments.
The conclusion section of the paper notes that, based on the
results of the experiments, it would be beneficial to use
graph data warehouses for implementing OLAP (online
analytical processing) systems and performing analytical
queries in a data warehouse kind of structure.

TABLE I. SUMMARIZED RESULTS OF QUERIES USED IN [23] BASED

ON QUERY TYPE

 Relational data
warehouse average
query times [sec]

Graph data warehouse
average query times
[sec]

Query type Star
schema

Snowflake
schema

Star
schema

Snowflake
schema

Data insertion
queries

1052 1088 11391 14083

Non-hierarchical
queries

8,92 9,01 83,12 83,39

Hierarchical
queries

84,08 85,43 4,57 4,69

Hierarchical and
cumulative queries

83,93 85,11 10,25 12,38

D. Critical summary on the state-of-the-art findings

There are many papers that compare graph databases to
relational databases in one way or another. However, while
comparing the relational database to the graph database,
most of the research papers use Neo4j to implement the
graph database used in the comparison. Although it is
considered the most developed and complete GDBMS on
the market, there should be more papers that focus on other
GDBMSs in order to have a fuller picture of the whole
field. Most papers’ results show that graph databases
provide faster query results than relational databases in
most of the analyzed cases. These cases usually involve
datasets with highly interconnected data, which is
something that puts them perfectly within the scope of this
paper. The queries used, however, include mostly select
queries and very few of them include insertion and update
queries, which are equally as important and there should
definitely be more emphasis on those aspects of querying in
future works.

MIPRO 2024/BIS-BDP 281

In order to analyze the comparability of graph databases
to relational databases in the data transaction aspect, the
options for enforcing integrity constraints in graph
databases were examined. The analyzed papers show that
further work is needed to improve the implementation of
integrity constraints in the native GDBMSs. Although there
are ways of getting around it by implementing the
constraints on a higher application layer, this approach is
usually less efficient than the constraints being built into
the graph management system itself, which can potentially
introduce significant performance overhead.

Data warehousing focuses on storing and analyzing a
large amount of data from different sources. The papers
analyzed in this field show various ways and methods of
transforming relational data warehouses into graph data
warehouses, but only the authors of [22] offer concrete
metrics that compare the two in various aspects. The
authors show that graph data warehouses offer a selection
of analytical tools that relational data warehouses cannot
compete with in terms of speed and efficiency when
working with a large quantity of interconnected data. Those
tools, however, come at the price of slower data insertion.
Due to the limited number of studies conducted in this
field, it would be beneficial to conduct additional research
in order to substantiate or refute the claims made in the
papers in this field, but also find new ways of
implementing data warehouses using graph databases and
comparing them to relational data warehouses.

V. CONCLUSION

In this paper, an alternative to relational databases in an
interconnected Big Data environment was given in the
form of graph databases. The reasons for choosing graph
databases were thoroughly explained, but the alternative
NoSQL solutions and the explanations on how they would
perform in such an environment were also given. An
analysis of graph databases was provided which included
defining the most important graph database features and
types of graph database models. To provide a full picture of
the state of the art in this field, several research papers
including graph databases and their comparison to
relational databases in various scenarios were analyzed.

 With both the theory presented and the research papers
analyzed, it can be concluded that graph databases are
indeed a valid alternative to relational databases in an
interconnected Big Data environment. The degree of their
suitability, however, depends on the users’ needs from the
database itself. The majority of the available data show that
graph databases are faster in analyzing data in such an
environment, however, the data also show that using graph
databases for transactional purposes is slower and less
effective. Although the research papers analyzed cover
many scenarios and situations, further research is needed in
order to fully understand the differences between graph
databases and relational databases. In addition to that, even
though they were not included in the scope of this paper,
there are relational database management systems, which
have certain graph database capabilities as part of their
solution, such as PostgreSQL or Oracle DB, which could
allow for the user to leverage the benefits of both relational
and graph databases for certain use cases, potentially
proving to be a good future research opportunity.

REFERENCES

[1] P Baxendale and E F Codd, “A relational model of data for large
shared data banks,” Communications of the ACM, (1970), 377-387

[2] Robinsson I, Webber J and Eifrem E, “Graph Databases: New
Opportunities for Connected Data,” O’Reilly Media, (2015)

[3] He C, “Survey on NoSQL Database Technology,” Journal of
Applied Science and Engineering Innovation, (2015), 2(2)

[4] Gupta A et al., “NoSQL databases: Critical analysis and
comparison,” 2017 International Conference on Computing and
Communication Technologies for Smart Nation, 2017, 293-299

[5] Van Hieu D, Smanchat S and Meesad P, “MapReduce join
strategies for key-value storage,” 2014 11th Int. Joint Conf. on
Computer Science and Software Engineering 2014 (2014), 164-169

[6] Abadi D, Madden S and Hachem N, “Column-stores vs. row-stores:
How different are they really?,” Proceedings of the ACM SIGMOD
International Conference on Management of Data, (2008), 967-980

[7] Celesti A, Fazio M and Villari M, “A Study on Join Operations in
MongoDB Preserving Collections Data Models for Future Internet
Applications,” Future Internet 2019, Vol. 11, Page 83, (2019)

[8] Fernandes D and Bernardino J, “Graph Databases Comparison:
AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB,”
DATA 2018 - Proceedings of the 7th International Conference on
Data Science, Technology and Applications, (2018), 373-380

[9] Angles R, “The property graph database model,” Alberto
Mendelzon Workshop on Foundations of Data Management, (2018)

[10] Codd E, “Data models in database management,” Proceedings of
the 1980 Workshop on Data abstraction, Databases and Conceptual
Modeling, ACM Press, (1980), 112-114

[11] “DB-Engines Ranking - ranking of graph DBMS”, https://db-
engines.com/en/ranking/graph+dbms (accessed April 21. 2023).

[12] “Best Graph DBs in 2023”, https://www.g2.com/categories/graph-
databases (accessed April 21. 2023).

[13] Lazarska M and Lamch O, “Comparative study of relational and
graph databases,” INFORMATICS 2019 - IEEE 15th International
Scientific Conference on Informatics, Proceedings, (2019), 363-370

[14] Macak M, Stovcik M and Buhnova B, “The Suitability of Graph
Databases for Big Data Analysis: A Benchmark,” Proceedings of
the 5th International Conference on IoT and Big Data (2020)

[15] Kotiranta P et al., “Performance of Graph and Relational Databases
in Complex Queries,” Applied Sciences 2022, Vol. 12, Page 6490

[16] Uzunbayir S, “Relational Database and NoSQL Inspections using
MongoDB and Neo4j on a Big Data Application,” Proceedings - 7th
International Conference on Computer Science and Engineering,
UBMK 2022, (2022), 148-153

[17] Do T et al., “Query-based Performance Comparison of Graph
Database and Relational Database,” ACM International Conference
Proceeding Series, (2022), 375-381

[18] Šestak M, Rabuzin K and Novak M, “Integrity constraints in graph
databases - implementation challenges,” Proceedings of Central
European Conference on Information Systems, (2016), 23-30, 2016

[19] Pokorný J, Valenta M and Kovačič J, “Integrity constraints in graph
databases,” Procedia Computer Science, (2017), 975-981, 109

[20] Pokorný J, “Conceptual and database modelling of graph
databases,” ACM International Conference Proceeding Series,
(2016), 370-377, 11-13-July-2016

[21] Gardner S, “Building the data warehouse,” Communications of the
ACM, (1998), 52-60, 41(9)

[22] Akid H and Ayed M, “Towards NoSQL graph data warehouse for
big social data analysis,” Advances in Intelligent Systems and
Computing, (2017), 965-973, 557

[23] Akid H et al.,“Performance of NoSQL Graph Implementations of
Star vs. Snowflake Schemas,” IEEE Access, (2022), 48603-48614

[24] De Virgilio R, Maccioni A and Torlone R, “R2G: a Tool for
Migrating Relations to Graphs,” Proceeding of the 17th
International Conference on Extending DB Technology (2014)

282 MIPRO 2024/BIS-BDP

