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Abstract—This paper discusses a software development
method focused on creating a self-adapting and evolving
system using AI and ML techniques. The goal is to reduce the
need for manual software updates, offering a solution that
continuously adapts to changing requirements. To achieve
this goal, an AI-based update model is presented, and a pos-
sible system is discussed. Use case example demonstrate the
applicability of the update model in real-world scenarios. As
a cloud-based solution, this method could ensure scalability
and broad applicability across various industry sectors.
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I. INTRODUCTION

Given the rapid pace of technological development,
where software products evolve quickly, the ability of
software to adapt to rapidly changing requirements and
evolve quickly is becoming a key competitive advantage.
Therefore, there is a need for more agile and adaptive
approaches to software development. Traditional methods
of development and software updating are often slow
and cannot effectively cope with this need for agility.
Software companies face the challenge of maintaining
and securing their products. Any failure to update or
maintain can lead to serious security breaches and financial
losses. This is particularly important in sectors such as
finance and healthcare, where the security and reliability
of software are critical. There is a clear opportunity and
motivation to utilize advanced technologies such as AI
and ML in addressing these challenges. These technologies
offer opportunities for automation and intelligent decision-
making that go beyond current capabilities. The pre-
sented approach represents the continuous integration of
user feedback and semi-automated adaptation of software,
which can lead to an improved end-user experience and
higher product value.

The AI-based update model represents an important step
in the development of automated software engineering. It
focuses on the creation of systems that use artificial intel-
ligence (AI), in particular generative models and machine
learning (ML), to automate the process of software updat-
ing by extending the idea of dynamic software updating.
This approach has two objectives. First, to enable the soft-
ware to continuously adapt and evolve to changing end-
user requirements and environmental conditions. Second,
to reduce the need for constant human supervision and
intervention in the software development process. In other

words, to create an new model for software development -
a model that is automated, adaptable, and future-oriented.

The idea of proposing a system based on this model
stems from the current challenges in software engineering,
where update processes are often slow, error-prone, and
require significant resources. Existing solutions in the
industry face challenges such as delays in implement-
ing new functionalities, difficulties in maintenance, and
security risks. One example is the 2011 incident with
Amazon’s Elastic Compute Cloud (EC2), where an update
failure led to the disruption of online services hosted on
Amazon EC2 [1], including popular websites and services.
Another example is the case from 2022 when Rogers
Communication experienced a service interruption due to
a maintenance upgrade, affecting millions of users. The
AI-based update model provides a solution to reduce the
risk of such service interruptions through automation and
intelligent update management. Furthermore, end users
who are not enthusiastic about the current automatic
update solutions would benefit from update systems that
are more personalized and learn based on users’ actions
[2].

II. MOTIVATION

The inspiration for this approach comes from funda-
mental research of generative models, such as the work of
Goodfellow et al. [3] on Generative Adversarial Networks
(GANs) and the work of LeCun [4] and Bengio [5] on
Deep Learning. These models offer a new paradigm for
code generation and enable the creation of more efficient
and reliable software solutions [6]. Furthermore, natural
language processing (NLP) techniques, based on work
such as that of Mikolov et al. [7], [8], enable the under-
standing and analysis of source code at a deeper semantic
level such as in [9]–[11]. In the area of test automation and
validation, this approach uses machine learning techniques
to detect bugs and security vulnerabilities [12], based on
the approaches described in the work of Kingma and
Welling [13] on autoencoders.

Dynamic software updating facilitates the rapid integra-
tion of new code and ensures that the software remains
relevant and effective. In the context of programming
languages such as Java and C#, "hot-swapping" enables
replacing code parts during program execution. The pre-
sented approach can use these mechanisms for code up-
dates without interrupting or restarting the application. For
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Fig. 1: Autonomous update system in cloud

example, the Java Platform Debugger Architecture (JPDA)
[14] is a set of interfaces that enable development tools
such as debuggers to communicate with Java applications.
JPDA includes the Java Debug Interface (JDI), which
allows the "hot-swapping" of code by replacing method
code during execution [15]. Similarly, the "Hot reload"
feature in .NET [16], for instance, for C#, allows devel-
opers to modify code while the program runs in debug
mode. These mechanisms and their extensions [17] can be
used to implement dynamic updating within the presented
update model.

III. AVAILABLE SOLUTIONS

Currently, manual software updates as the norm in
development often take too long due to the complexity of
the code and the need for extensive manual testing. There
are various software development and update automation
tools and platforms that can be used to automate certain
aspects of the development process, which can speed
up and ease the process to some extent. Tools such as
Jenkins [18], Travis CI [19], and GitLab CI/CD [20]
enable continuous integration (CI) and continuous delivery
(CD), automating the processes of testing and deploying
software. This enables updates and new functions to be
made available to end-users more quickly. On the other
hand, automating code testing, e.g., with Selenium [21]
or JUnit [22], helps to identify and fix problems in the
software before it is released to production, ensuring
a high-quality final product. Systems such as Nagios
[23], Prometheus [24], and the ELK stack (Elasticsearch,
Logstash, Kibana) enable the automation of application
performance monitoring and logging, allowing problems
to be quickly identified and resolved.

The approach presented in this paper sets itself apart
from existing solutions through its ability to automate the
software update process, relying on the latest research in
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Fig. 2: Representation of the AI-based update model

the field of artificial intelligence and machine learning,
and using sophisticated machine learning algorithms for
real-time decision-making and adaptation. This represents
a significant advance in the adaptability and efficiency of
software solutions compared to current industry standards.

IV. UPDATE MODEL

The update process in the model begins with a thorough
analysis of the existing software. This analysis involves
reviewing and understanding the software in the form of
source code and configuration files using natural language
processing (NLP) techniques. NLP is used to understand
the structure and function of the code, taking into account
existing research and techniques in the field. Methods
such as tokenization and semantic analysis are used to
understand the code and identify areas for improvement.

After the analysis, generative models take over. They
use deep generative learning to develop and implement
new parts of the code aiming to improve performance,
correct errors, or add new functionalities. This approach
finds parallels in industrial initiatives such as automated
programming [25]–[27] and automatic software repair
[28]–[30], but the presented update model goes one step
further and integrates advanced AI techniques to enable
automation, and improve autonomy and situational adapt-
ability. A crucial capability to achieve is the continuous
analysis of end-user feedback and external influences
(e.g. changes in laws and regulations). This information
adapts and optimizes the generated code to meet current
user and environmental requirements. It also includes the
development of advanced methods for automated testing
and validation of new code using machine learning meth-
ods to detect errors and potential security vulnerabilities.
This ensures that the updated code improves software
functionality and a high level of security and reliability
before the code is implemented into the existing software.

Dynamic updating, an essential part of the model,
enables the updated code to be successfully integrated into
the software in real-time so that generated changes can be
performed quickly and without interrupting the end-user’s
workflow. With a focus on autonomy, adaptability, and
continuous development, such an update model represents
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Fig. 3: Snake Game

a era of software development in which software contin-
uously adapts and improves.

Based on the previous description, the key components
of the update model are (Fig. 2):

1) Code analysis
2) Generating code adjustments
3) Testing and validation

These components are explained in more detail in the
following subsections.

A. Code analysis

The update model could use Natural Language Pro-
cessing (NLP) and Deep Learning (DL) techniques to
analyze the existing code. Models such as BERT (Bidi-
rectional Encoder Representations from Transformers) or
GPT (Generative Pretrained Transformer) could be used
to understand the context and structure of the code. Such
analyses are focused on understanding the functionality
of the code, identifying areas that need to be improved
or optimized, and detecting potential errors or security
vulnerabilities.

B. Generating code adjustments

The update model could use generative models such
as GANs (Generative Adversarial Networks) or Varia-
tional Autoencoders (VAEs) to generate changes in the
code. These models can be trained on large quantities of
code data to learn how to generate functional and opti-
mized code segments and effectively predict the necessary
changes based on the analysis. Once analyzed, generative
models can generate suggestions for updating or changing
code automatically. This includes bug fixes, performance
optimizations, and the introduction of new features that
respond to new requirements or trends.

C. Testing and validation

In the testing and validation phase, techniques such
as reinforcement learning (RL) can be used to simulate
various application scenarios and test the robustness of the
code. In addition, automated testing tools such as Selenium
or JUnit can be integrated to check functionality and
performance. This includes checking the correctness of
the generated code, its compatibility with existing systems
and security aspects. The system can also use advanced
algorithms to evaluate the efficiency of the code and detect
problems before updates are implemented.

Fig. 4: Example of a class hierarchy update from basic
version to generated version (vb - basic, va -

autonomously generated)

V. SYSTEM FEATURES

A system developed according to the proposed model
(Fig. 1) would enable the following features: continuous
learning, multi-platform support, and security. The base
version vb represents the previously deployed version of
the compiled code. The system performs adjustments on
vb to autonomously generate the va version (Fig. 4). This
is the mode in which continuous updates would be carried
out. In addition, cloud-based analysis would enable sup-
port for multiple platforms, regardless of the domain and
programming language used. Security measures should be
integrated by monitoring the latest findings on security
protocols and issues so that the system can create patches
to fix security vulnerabilities. Features are described in
detail in the following subsections.

A. Continuous learning and adaptation

The system can use online learning and adaptive al-
gorithms, such as online versions of machine learning
algorithms, to continuously adapt and learn from new data.
This allows the system to be updated and adapted in real-
time without the need to regularly retrain the models. The
system can continuously improve by collecting and analyz-
ing data on performance and software usage, allowing it to
better adapt to future requirements and trends in software
development.

B. Multiple platforms

The system could be designed to support a wide range of
programming languages and development environments,
ensuring its applicability to different types of software
projects. This flexibility allows system to be widely used
in different software development contexts. The system
can utilize technologies such as Docker and Kubernetes
to support different programming languages and develop-
ment environments, ensuring the system’s flexibility and
scalability and enabling its application to different types
of software projects.
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C. Security

Security is a critical component of any software system.
Integrating advanced security protocols would ensure that
all automated updates are secure and reliable, such as
machine learning-based methods that can detect unusual
patterns in the code that could indicate security vulnerabil-
ities. Security integration, therefore, includes algorithms to
detect and prevent security vulnerabilities and anomalies,
as well as protocols to ensure data privacy and integrity.

D. System as a Service

An autonomous software evolution system could be
implemented as a cloud-based solution that offers scal-
ability and service diversity for system users, specifically
targeting developers and companies focused on software
development and maintenance rather than end-users di-
rectly. Limited functionality will suffice for small sys-
tem users, while large system users will have access to
more advanced system features. The limited functionality
could take the form of less complex upgrades and a
smaller number of upgrades, as envisioned by the con-
cept. Functionality could range from user customization
and adding new features based on external influences to
security maintenance. In addition, system access could be
based on subscription models, e.g., on a monthly basis
or according to the number of upgrades with selected
feature levels. The primary users of the system would be
companies developing applications, offering end-users a
unique experience and enhanced software security with
continuous development potential. Potential system users
could also include educational institutions for research and
government agencies or organizations focused on security
and data protection.

E. Potential limitations

Potential obstacles to the implementation and use of
the system include the technical complexity of execution
and the generalization of the derived models. In particular,
models trained for specific business applications may not
be efficient and adaptable to other domains, such as educa-
tional software or video games. This will be demonstrated
by implementing the concept of autonomous software
evolution in the form of limited functionality, as described
in the following section. The limited functionality could be
in the form of less complex upgrades and a smaller number
of updates. Such an approach enables gradual testing and
improvement. However, the generalization of the update
model should be successfully demonstrated in a broader
application.

On the other hand, no software can be delivered com-
pletely bug-free - due to potential bugs in the libraries
used, scenarios overlooked by the developers, or unex-
pected user input. The key is to improve existing models
to detect and fix logical errors without inadvertently in-
troducing more severe ones. This emphasizes the need for
advanced validation and sophisticated feature extraction

methods to mitigate risk and highlights the need for further
research in this area.

Possible challenges and limitations in validation include
ensuring the system’s robustness and reliability under
different operating conditions and platforms. Compliance
with ethical and legal standards, e.g., in industries where
updates are critical, such as healthcare, transportation, and
infrastructure, can limit the scope of automatic updates. In
addition, maintaining transparency and explainability of
the model’s decisions, especially in the event of errors or
unwanted updates, also needs to be considered.

VI. AUTONOMOUS SOFTWARE CONCEPT

The plan for the future is to develop an autonomous
system as a proof of concept and to carry out simple
updates. As a practical example to test the update model
concept, the system’s development and implementation
for the popular 2D game Snake is planned. The goal is
to enable the system to identify opportunities to improve
the game, such as optimizing the end-user interface, en-
hancing AI opponents, or adding new levels and features.
The system will analyze user interactions, feedback, and
gameplay patterns, using machine learning techniques to
identify areas for improvement.

The system can also be used to automatically balance
difficulty levels to adjust game parameters to ensure an
optimal gaming experience for players of different abili-
ties. Another possible example is the development of new
levels or challenges based on the popularity of existing
game elements to automatically generate unique content
that matches players’ preferences and abilities.

Using deep learning and generative models, the system
could not only passively monitor the game but also actively
experiment with minor changes, learn from the results, and
gradually introduce improvements. This method would
provide valuable data about the end-user experience and
interaction and enable dynamic, real-time software updates
that ensure continuous development and improvement of
the game. By gathering valuable data from the concept,
insights can be gained into areas of future development.

A. Use case example

Let’s take the example of the snake game: the player
controls a moving snake that consumes food so that it
grows and the player can collect points (Fig. 3). This
game can be placed in a hypothetical environment that
is monitored by an AI-based update system. A player
provides feedback that the game is becoming repetitive and
boring. Analyzing the player’s feedback results in the re-
quirement to change the game to keep the player engaged.
Analyzing the existing code automatically provides the
idea of generating the food so that it pulsates (appearing
and disappearing) and can only be consumed at certain
times. This is then used as a functional requirement to
generate suitable code that is validated. Once successfully
validated, the code update is applied to the running game
- much to the player’s surprise.
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Fig. 4 shows the game versions in the form of a class
hierarchy. On the left is the basic version vb and the au-
tonomously generated version va, on the right, introducing
the pulsating behavior of the food.

VII. CONCLUSION

The AI-based update model is at the forefront of tech-
nological progress and focuses on the development of an
autonomous system that uses artificial intelligence, in par-
ticular generative models, for dynamic software updates.
This innovative approach combines the latest research
in the field of machine learning and natural language
processing and aims to achieve a level of autonomy and
adaptability currently lacking in industrial and academic
solutions. It will enable the software to adapt and update
itself to changing requirements and conditions without the
need for manual intervention.

The contribution of the presented AI-based update
model lies in its ability to change the software develop-
ment and updating process. To achieve this, an analysis of
end-user feedback and the currently running software code
is used. Based on the analysis results, decisions are made
to make code adjustments that introduce new or changed
features for users. Using the game Snake as an example, it
is shown how the system could provide unique experiences
for the end-user during the game based on the presented
model.

The presented approach aims to streamline software
updates, reduce costs, and enhance security. It also seeks
to personalize end-user experience, making software more
adaptable to individual needs. These improvements are
expected to boost efficiency and safety, facilitating AI’s
broader application in sectors like healthcare, finance, and
manufacturing, thereby revolutionizing software engineer-
ing towards autonomous, adaptable solutions.
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