
Interactive Programming Tutorials in Automated
Programming Assessment System Edgar

I. Mekterović*, Lj. Brkić**, M. Fertalj*** and M. Fabijanić****

*, **, *** University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
**** Algebra University College/Software Engineering, Zagreb, Croatia

* igor.mekterovic@fer.hr
** ljiljana.brkic@fer.hr

*** melita.fertalj@fer.hr
**** mario.fabijanic@algebra.hr

Abstract - Automated programming assessment tools are
software systems widely used in education to assess
programming code without manual intervention. Beyond
exam scenarios, these tools are increasingly applied in e-
learning contexts. In this realm, interactive programming
tutorials have gained prominence for their effectiveness in
teaching programming concepts. These tutorials blend
theoretical knowledge with hands-on exercises, providing
real-time feedback on code errors to facilitate prompt
identification and correction by learners. The interactive
nature engages learners actively, enhancing their
understanding, and adaptability accommodates
individualized progress. The accessibility and scalability of
interactive programming tutorials suit learners of diverse
skill levels. Integrated with automated assessment systems,
interactive tutorials not only provide a dynamic and
personalized learning experience but also alleviate the
burden on instructors by enabling interactive content
creation and offering valuable learning analytics. This
paper introduces an evolution of the Edgar system, now
equipped with an integrated interactive tutorial module.
This module can evaluate embedded questions and code
playgrounds in various programming languages, including
SQL, Java, C, Python, etc., as well as multiple-choice
questions. The integration represents a practical shift in
programming education, offering learners a versatile and
personalized approach to acquiring essential skills.

Keywords - component; formatting; style; styling; insert
(key words)

I. INTRODUCTION

Programming education has witnessed a significant
shift towards technology-driven approaches, particularly
with the widespread adoption of automated programming
assessment tools. Automated programming assessment
system (APAS) is an information system used in
educational environments to (semi)automatically assess
students' answers to programming questions. They
typically also support other types of questions, such as
multiple-choice questions, and provide monitoring and
logging of exams, various statistics, and visualizations,
etc. [1] Nowadays, they are typically implemented as web
applications. An excellent overview of automatic grading
and feedback tools can be found in a recent systematic
review [2]. These tools excel in efficiently evaluating
student code beyond exam settings, paving the way for
their integration into e-learning environments. Within this

landscape, interactive programming tutorials have
emerged as powerful instruments for effectively
conveying programming concepts (e.g. [3], [4], [5]). They
can blend theoretical knowledge with hands-on practice,
offering valuable near real-time feedback on code errors to
enhance learning efficiency [2]. The interactive nature
actively engages learners, fostering deeper understanding
and adaptability to diverse learning styles. Also, the
scalability and accessibility of these tutorials cater to
learners across various skill levels. For the content
creators, i.e. teachers, this technology also provides
numerous advantages. Tutorials with integrated automated
assessment features can automatically grade student code,
freeing up teachers' time for other tasks like providing
personalized feedback or creating new content. Consistent
automated feedback ensures all students receive similar
guidance, reducing the need for repetitive explanations.
Interactive tutorials can cater to large numbers of students
without requiring individual attention from the instructor,
which is very important given the current negative trend
of shortage of teaching staff in the IT sector. Furthermore,
digital learning platforms can gather valuable data about
students and their learning habits which can provide a
foundation for various learning analytics systems, which
is an area that is still under active development [6].

Recognizing this potential, in this paper we present an
evolution of the automated programming assessment
system Edgar with interactive learning capabilities. We
introduce an integrated interactive tutorial module capable
of evaluating various embedded elements within the
tutorial page (step). This module can evaluate code in
multiple programming languages (SQL, Java, C, Python)
and supports diverse question formats: traditional
multiple-choice questions, automatically evaluated
programming questions and embedded code playgrounds.
This integration presents a significant step forward for
Edgar, offering learners a versatile and personalized
approach to acquiring essential programming skills while
at the same time equipping teachers with new digital
platform for content creation and distribution – a very
practical contribution to enhance programming education
through technology-driven solutions.

248 MIPRO 2024/BIS-BDP

II. EDGAR AUTOMATED PROGRAMMING ASSESSMENT

SYSTEM

Edgar APAS [7] has been in development since 2016.
at the Faculty of Electrical Engineering and Computing
and is used for automatic evaluation of program code. It
was originally developed for the needs of evaluating code
in the SQL programming language (named after great
Edgar F. Codd), but it has since evolved into a general-
purpose system for evaluating program code. It can now
evaluate code written in C, Java, Python, C++, etc., or in
any programming language [1]. Besides programming
questions, it supports eight other question types (multi-
correct multiple-choice questions, free text questions,
diagrams, etc.) and can even be used to conduct peer
assessments [8]. Edgar is used intensively and has become
an indispensable part of large courses with several
hundred enrolled students (e.g., Introduction to
Programming, Object-Oriented Programming, Databases),
as well as smaller ones (e.g., Business Intelligence). For
example, in the previous academic year 2022/2023, Edgar
was used to conduct 74,513 exams with a total of 425,052
questions from 20 different courses. It is implemented as a
web-application that relies on modern open-source
technologies (Node.js, PostgreSQL, MongoDB, Angular,
etc.) and is publicly available to everyone under the MIT
license [9]. In order to extend Edgar with interactive
tutorials we had to develop a new SPA (Single Page
Application) application, the corresponding API and, of
course, modify the database. Figure 1. shows high-level
modular architecture of Edgar APAS. The newly
developed SPA is shown in the top left corner. Of course,
this extension also required a new server-side API and
database modifications.

Figure 1. Edgar’s modular architecture extended with Tutorial SPA
(upper left corner), new API and database modifications. 3rd party
components show in gray.

III. INTERACTIVE TUTORIALS IN EDGAR

Given that Edgar has rich possibilities for performing
and evaluating program code, it is natural to develop a
system in such a way that, in addition to testing students,
these possibilities are also used for learning. Such an
approach is advantageous for teachers as well (an
alternative would be to use commercial 3rd party cloud
services) – all their digital materials are in one place and
under their control. Students also have a better user
experience because they access one platform with a
uniform interface. A tutorials module was developed that
allows teachers to define tutorials (digital lessons) simply
and easily. Students, on the other hand, have a simple and
functional learning application: Figure 2. shows the

tutorial layout with simple header with basic information
about the step and navigation controls (back, forward and
direct step selection via drop-down). The content is laid
out vertically. Also, note the ticket button which is used to
communicate with the content-creator. This is a very
important feature as it enables us to collect feedback from
the learners, helping identify potential errors or topics that
are demanding and need to be explained more clearly.

Figure 2. Tutorial layout: simple and clear header with tutorial and
step information, and navigation controls. Step content is laid out
vertically. Ticketing system is included for communication with the
teacher.

Obviously, tutorials consist of an arbitrary number of
steps. Step is the basic building block of the tutorial, and
its content is defined using the markdown language.
Markdown is a simple markup language used to format
text documents with plain text characters. It allows one to
easily define titles, bold text, italics, lists, etc. without the
need for special software or programming knowledge.
Markdown is simple, searchable, and readable in its native
form, which makes it popular for writing online content,
creating readme files, and managing notes. There are
several versions of markdown, and Edgar already uses
GFM (GitHub Flavored Markdown) [10] to define the
question text, which is then transformed into HTML and
displayed to students in the browser. Additionally, in
Edgar GFM is extended to support constructs like
collapsible elements, mathematical formulas in Latex
syntax and various diagrams (Sequence, Class, ER,
Flowchart, etc.). For instance, Figure 3. shows the
definition of a question in Edgar where both formulas
(Latex expressions are enclosed in $$) and flowchart
diagram are used, followed by syntax highlighted
programming code in C.

MIPRO 2024/BIS-BDP 249

Figure 3. Extended GFM markdown in Edgar – markdown is at the top

of the figure, and rendered HTML preview at the bottom of the figure

Building on that, and to support the embedding of
questions in the content of the tutorial steps, new
extensions to GFM need to be introduced. Since GFM is
translated into HTML and it is allowed (but not
recommended) to embed HTML expressions in GFM,
HTML comments were used to define these new
constructs. Comments are ignored in the initial markdown
processing step and can be postprocessed by Edgar’s code
to produce desired content. In the remainder of the
chapter, different types of embedded questions are
described.

A. Multicorrect multichoice questions

There are two ways to embed a multiple-choice
question into the tutorial step content:

(1) Embedded multicorrect multichoice questions –
these are regular questions that are inserted into the step
text via the following markup:

<!-- question qid=<ID> {required} -->
<!-- /question -->

Obviously, an existing question (ID) from Edgar’s
question bank must be used, so this approach requires an

extra step of creating a question in Edgar’s regular
question edit form.

Any question can have the "required" attribute set, which
indicates that the question must be answered if the tutorial
is such that it does not allow skipping steps. With this,
teachers can force students to answer mandatory questions
to complete the entire tutorial.

(2) Inlined (markup) multicorrect multichoice
questions – for multicorrect questions, creating a new
question might be an overkill, especially for simple
questions that will not be used elsewhere in exams, and so
it is possible to create an ad-hoc question via markup:

<!-- multichoice required -->
<Question text>
@@@
Option 1
@@@
Option 2 <!-- correct -->
@@@
Option 3
<!-- /multichoice -->

The number of options and number of correct options is
arbitrary.

The following code defines a step with two multichoice
questions and Figure 4. shows how they are rendered to
the screen.

(a) Multichoice question 48135 referenced from
Edgar's question bank:
<!-- question qid=48135 required -->
 // inital code here, delete "required" attribute above
if the question is optional
<!-- /question -->

(b) Embedded multicorrect multichoice question:
<!-- multichoice required -->
Should I stay or should **I go**?
@@@
Stay <!-- correct -->
@@@
Go <!-- correct -->
@@@
Stall
<!-- /multichoice -->

Note the bookmark dots on the right serving two purposes:
they change color depending on whether the question is
answered correctly and enable quick positioning
(focusing) on the question.

250 MIPRO 2024/BIS-BDP

Figure 4. Embedded and inlined multicorrect question. Bookmark dots

on the right serve two purposes: they change color depending on
whether the question is answered correctly and enable quick positioning

(focusing) on the question.

B. Code questions

Given that code questions are more demanding in
terms of data that needs to be defined (answer in a
programming language, N test-cases, etc.) [7], it does not
make sense to enable an "ad-hoc" inline version as in
multi-correct questions, and such questions must be
defined in a standard way and then simply referenced
from the step markdown. This approach also allows us to
use all previously defined questions. The extended
markdown syntax is as follows:

<!-- code-question qid=<ID> {required} -->
// initial code here
<!-- /code-question -->

It is possible (not mandatory) to specify an arbitrary
text between the code-question tags that will then appear
as the initial program code in the tutorial. SQL questions
are referenced in the same way as questions from "classic"
programming languages (C, Java, ...), although the way
they are rendered and evaluated is fundamentally different
[7]. For example, Figure 5. shows a C question and a
SQL question for the following markdown:

2. **Code question** - you can use any programming
language supported in Edgar, eg. C, Java, Python, SQL, ...

<!-- code-question qid=41557 -->
// inital code here
double pi(int n) {
}
<!-- /code-question -->

Note that this question does not have the "required" flag.
So, the entire step will turn green with or without the

correct solution to this question.
Also, if this was allow-random-steps-OFF tutorial, the
solution to this question would be optional.

SQL questions
SQL is also supported, eg:
<!-- code-question qid=46610 required -->
<!-- /code-question -->

Figure 5. C and SQL questions. C question in optional, while SQL

question (solution) is required.

Note that the first (C) question does not have the
"required" flag - the entire step will turn green with or
without the correct solution to this question. Also, if the
tutorial is defined to require step solutions to traverse
steps, this question will not be considered. In this way, we
can have N mandatory and M optional questions in any
step.

C. Code playgrounds

Finally, sometimes it is convenient to just allow the
student to try some code, whether it is already prepared or
needs to be written or expanded on the given template.
Then it is convenient to allow the student to have a "small
development interface" within the step, where it is
possible to write code, provide input and run the code and
see the results. This is very similar in functionality to the
commercial online Read-Eval-Print Loop systems (e.g.
ReplIt [11], CodePen [12], etc.) that allow users to try out
the code online, only here it is elegantly integrated into the
tutorial content. The syntax is slightly different than the
question syntax:

MIPRO 2024/BIS-BDP 251

<!-- code-playground crid=<ID> langids=(<ID>{, ID}*) -->
{initial code}
<!-- /code-playground -->
where crid stands for code-runner ID and is tied to the
way Edgar evaluates code – it sends it to the services
which “know” how to evaluate some programming
languages and these services are registered in Edgar with
their IDs. Langids stands for “language IDs” and denotes
a list of allowed programming languages that can be used
to write the code. Initial code is optional. Edgar’s tutorial
definition GUI has buttons that insert these markups into
the markdown, so the user does not really need to know
them in detail. Figure 6. shows code playgrounds for the
following markup:

<!-- code-playground crid=10 langids=(4)-->
// Please fix the following code
// there is a syntactical and logical(security) error in this code:
#include <stdio.h>
int main()
{
 char[512] stdin;
 printf("\nHello from the playground!");
 scanf("%s", stdin);
 printf("\nYour stdin was: %s", stdin);
 return 0;
}
<!-- /code-playground -->

Code questions and playgrounds are also available in multi-language
forms!
Try this hello world example for Python and C:
<!-- code-playground crid=10 langids=(4,34) -->
 write hello world
<!-- /code-playground -->

Figure 6. Single programming language and multi-programming

language (C and Python) sandbox.

D. Learning analytics foundation

Besides keeping the tutorial state for each student
(current answers, resolved steps, etc.) so that students can
leave and continue tutorials later, Edgar keeps a very
detailed log of activities in the tutorial application which
can provide a foundation for learning analytics scenarios.
Figure 7. shows a part of MongoDB document that is kept
for each student-tutorial instance – note the “events” array
which stores the student activity.

Figure 7. Student’s tutorial document – besides current answers, it
contains the detailed log of activites (events array)

This valuable data quickly accumulates, especially for
large courses. Figure 8. shows the tutorial usage for the
Databases course in the past academic year. We can see
the trend of decreased usage as the semester progresses.

Figure 8. Usage for the Databases course in 2022/2023 showing
negative trend in usage – 439 students used first tutorial, and only 141

last tutorial.

Cumulatively, that makes 3168 documents like the one in
Figure 7. that can be used to provide various analysis –
from preventing student churn, predicting the outcome of

252 MIPRO 2024/BIS-BDP

the course, improving the tutorial content, etc. especially
when combined with other data collected by the APAS.
These topics will be the subject of a future work.

IV. CONLUSION

This paper introduces an innovative enhancement to
the Edgar automated programming assessment system: an
integrated interactive tutorial module. This module
empowers educators to create engaging learning
experiences by incorporating diverse question formats and
code playgrounds within the tutorials. It leverages existing
APAS functionalities like secure code execution and
ticketing system to support various programming
languages, including SQL, Java, C, and Python, catering
to a broader learner audience. The key benefits of this
integration are: (1) versatility and personalization:
students can progress through interactive tutorials at their
own pace, encountering various question types and
practicing code in real-time, promoting individualized
learning; (2) enhanced engagement: the interactive nature
of the tutorials actively engages learners, fostering deeper
understanding and adaptability to diverse learning styles;
(3) content creation and distribution: teachers benefit from
a user-friendly platform for creating and sharing
interactive tutorials, streamlining content creation and
distribution, and (4) learning analytics foundation: Edgar's
detailed activity logs provide valuable data for future
learning analytics initiatives.
In a more general sense, our work demonstrates how
existing APAS systems can be extended to seamlessly
integrate interactive teaching lessons. This leverages the
inherent strengths of APAS, such as sandboxing and code
evaluation, to create engaging and personalized learning
experiences. Moreover, the rich data already collected
through assessments and now within the interactive
elements opens exciting avenues for future research in
learning analytics. This paves the way for personalized
learning scenarios and improved educational outcomes. In
addition, in future work, we will explore the possibilities
of integrating Edgar with generative AI models to provide
students with fast and high-quality feedback. We will
investigate the usability of AI models for assessment as
well, but keeping in mind that this technology is readily
available to everyone, it is also necessary to address
plagiarism detection.

REFERENCES

[1] I. Mekterovic, L. Brkic, and V. Krstic, “Programmable

Questions in Edgar,” 2023 46th ICT Electron. Conv. MIPRO

2023 - Proc., vol. 0009, pp. 775–780, 2023, doi:

10.23919/MIPRO57284.2023.10159897.

[2] M. Messer, N. C. C. Brown, M. Kölling, and M. Shi,

“Automated Grading and Feedback Tools for Programming

Education: A Systematic Review,” ACM Trans. Comput.

Educ., vol. 1, no. 1, pp. 1–43, 2023, doi: 10.1145/3636515.

[3] R. Suzuki, J. Kato, and K. Yatani, “ClassCode: An Interactive

Teaching and Learning Environment for Programming

Education in Classrooms,” 2020, [Online]. Available:

http://arxiv.org/abs/2001.08194.

[4] F. Engelberger, P. Galaz-Davison, G. Bravo, M. Rivera, and

C. A. Ramírez-Sarmiento, “Developing and Implementing

Cloud-Based Tutorials That Combine Bioinformatics

Software, Interactive Coding, and Visualization Exercises for

Distance Learning on Structural Bioinformatics,” J. Chem.

Educ., vol. 98, no. 5, pp. 1801–1807, 2021, doi:

10.1021/acs.jchemed.1c00022.

[5] Z. Azimullah, Y. S. An, and P. Denny, “Evaluating an

interactive tool for teaching design patterns,” ACE 2020 -

Proc. 22nd Australas. Comput. Educ. Conf. Held conjunction

with Australas. Comput. Sci. Week, pp. 167–176, 2020, doi:

10.1145/3373165.3373184.

[6] L. Márquez, V. Henríquez, H. Chevreux, E. Scheihing, and J.

Guerra, “Adoption of learning analytics in higher education

institutions: A systematic literature review,” Br. J. Educ.

Technol., no. August, pp. 1–21, 2023, doi:

10.1111/bjet.13385.

[7] I. Mekterovic, L. Brkic, B. Milasinovic, and M. Baranovic,

“Building a comprehensive automated programming

assessment system,” IEEE Access, vol. 8, pp. 81154–81172,

2020, doi: 10.1109/ACCESS.2020.2990980.

[8] L. Brkić, I. Mekterović, M. Fertalj, and D. Mekterović, “Peer

assessment methodology of open-ended assignments: Insights

from a two-year case study within a university course using

novel open source system,” Comput. Educ., p. 105001, Feb.

2024, doi: 10.1016/J.COMPEDU.2024.105001.

[9] L. Mekterovic, Igor; Brkic, “Files · master · edgar-group /

edgar · GitLab.” https://gitlab.com/edgar-group/edgar/-

/tree/master (accessed Feb. 06, 2024).

[10] “GitHub Flavored Markdown Spec.”

https://github.github.com/gfm/ (accessed Feb. 07, 2024).

[11] “Home - Replit.” https://replit.com/~ (accessed Feb. 08,

2024).

[12] “CodePen: Online Code Editor and Front End Web Developer

Community.” https://codepen.io/ (accessed Feb. 08, 2024).

MIPRO 2024/BIS-BDP 253

