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Abstract—User interfaces are among the most frequently
used systems for interaction. To ease the process of creating
user interfaces for designers and developers, in this paper,
we aim to explore methods for improving interface design.
We propose a methodology focused on improving UI through
the implementation of a layout generation model. This model
leverages Diffusion Layout Transformer (DLT) and is trained
using comprehensive datasets such as Rico, Clay and a Hug-
gingface dataset. The effectiveness of our model is evaluated
based on its ability to generate aesthetically pleasing and
functional UI layouts. We conclude the paper by discussing
the implications of our findings and outlining future research
directions in the automation of UI design using machine
learning. The paper underscores the potential and challenges
of integrating machine learning in Ul design, paving the way
for future advancements in automated UI layout generation.
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I. INTRODUCTION

User interfaces (UI) are central to interaction in the
digital world, where not only the content but also the
design and user experience crucially determine their overall
quality. Research underscores the importance of UI design,
showing its impact on user preferences [1], perceived
usability [2], credibility [3], and performance [4]. Among
various types of Uls, mobile interfaces are the most
commonly used [5]. The visual and functional aspects of
Uls are often more apparent to users than the underlying
complexities, making the construction of a well-designed
interface essential for a positive user experience.

Our goal is to automate enhancement of mobile Uls
using machine learning, supporting designers and devel-
opers in refining existing interfaces. The integration of
machine learning enables the analysis and prediction of
user preferences to create more intuitive and user-friendly
interfaces.

This paper comprises five sections: a review of relevant
literature on UI/UX and UI enhancement methods; a de-
tailed description of our approach, including the datasets
and methodology; an analysis of our model’s results fol-
lowed by a discussion of our findings, their implications,
and future research directions.
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II. RELATED WORK
A. Principles of Ul/UX Design

User Interface (UI) and User Experience (UX) design
are foundational concepts in creating digital solutions that
are not only aesthetically appealing but also functionally
efficient and user-friendly. The UI is the tangible bridge
between the user and a digital product, be it a website,
application, or any digital tool [6]. User Experience, a
concept popularized by Don Norman, extends beyond the
immediate interaction, encompassing all aspects of the end
user’s interaction with the company, its services, and its
products [7]. The distinction between Ul and UX is critical:
while UI focuses on the momentary interactions between
user and machine, UX encompasses the overall experience
of using a product.

User-centered design is grounded in principles that pri-
oritize the user’s needs and experiences. Derived from
experts like Jakob Nielsen [8] and Ben Shneiderman [9],
these principles serve as guidelines for creating intuitive
and efficient Uls. Practical guidelines rooted in Gestalt
psychology further refine UI design, with concepts like
alignment, composition, color usage, emphasis, the Guten-
berg diagram, and Fitts’s law [10].

In scientific literature, the measurement of a UI’s aes-
thetics is most commonly defined as assessing its visual
complexity. The notion of using visual complexity as a
means to measure the aesthetics of a Ul comes from an
early paper "Modelling Interface Aesthetics" [11]. The
authors break down visual complexity into smaller com-
ponents like balance, symmetry, and sequence which they
find all influence visual complexity.

Our study focuses on automating the evaluation and en-
hancement of specific UI design elements, acknowledging
that the breadth of UI/UX design involves intricacies that
extend beyond the scope of current automation capabilities.
By balancing these principles with the capabilities of au-
tomation, we aim to develop interfaces that are technically
robust and user centric.

B. Enhancement of Uls

The pursuit of automating Ul design has been a focus of
researchers for a long time. Initially, model-based systems
like UIDE [12] and Jade [13] attempted to guide Ul
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generation using formal models that described tasks, data,
and users. These early systems, while innovative, were
often limited by their reliance on predefined templates and
heuristic rules, which made them challenging to use and
less effective at capturing complex design distributions.
This limitation led to a pivot towards more dynamic and
adaptable methods, primarily driven by advancements in
deep generative models. The field has seen significant
growth, particularly with the introduction of models based
on Variational Autoencoders (VAE), Generative Adversar-
ial Networks (GAN), and Transformer-based techniques.

VAE:s, such as LayoutVAE [14] have shown promise in
probabilistic and autoregressive layout generation. Layout-
VAE uses latent variables to generate a variety of layouts
from a single data point, characterized by a dual VAE
structure.

GANSs have also been pivotal, with models like Layout-
GAN [15] using a GAN framework to synthesize semantic
and geometric properties of scene elements. Its capability
to handle class probabilities and geometric parameters
allows them to create diverse and precise layouts.

The use of Transformers in layout generation marks
another significant advancement. Due to its self-attention
mechanism it allows processing of complex spatial rela-
tionships in layout design. The Layout Transformer [16]
specializes in generating structured layouts, utilizing the
decoder block of the Transformer model to efficiently
generate layouts of arbitrary lengths.

Recent models like LayoutGAN++ [17] and GUILGET
[18] represent the fusion of Transformer and GAN frame-
works, emphasizing their ability to handle diverse inputs
and focus on semantic relationships between elements.
The diffusion layout transformer (DLT) [19] and Lay-
outDM [20] introduce novel approaches by employing joint
continuous-discrete and modality-wise discrete diffusion
processes, respectively, for layout generation. These mod-
els exemplify the evolving complexity and sophistication
in automated UI design, progressively inferring noiseless
layouts from initial noisy inputs.

III. EXPERIMENT METHODOLOGY

In this work, we want to improve the design of user
interfaces by using machine learning methods. Our idea is
to generate alternate, better versions of an existing design.

To generate a new design we have decided to use
generative methods. We will be using layout generation
methods, specifically we will be following the work of
[19] by implementing the DLT model. A more in-depth
explanation on how layout generation methods and DLT
work can be found in following sections.

Our layout generation pipeline shown in Fig. 1 takes an
image of an existing UI and its descriptive features as an
input. They are fed to the main part of the pipeline — the
layout generation model. The model then produces several
alternate versions of the Ul as an output. Afterward, using
certain UI metrics, we will evaluate proposed alternate

236

> — > 08—
Layout Generation 5
Model P conng R

Ly

—> 08—

Fig. 1. Diagram representation of the pipeline

versions of the original Ul Only the ones that have
improved the original UI based on the selected and relevant
metrics will be kept and propose them to the user as the
final output of the pipeline.

A. Layout Generation

To generate multiple versions of an Ul, we have chosen
to work with layout generation models. The main idea
behind layout generation is to produce a new version of a
layout by trying to determine the position of elements on
the screen. Since we want to produce new layouts from
preexisting ones, the look of the preexisting layout will
determine the constraints for the newly generated layout.
Specifically, we will be using an implementation of a
conditional layout generative model called Joint Discrete-
Continuous Diffusion Layout Transformer, DLT [19].

B. Diffusion Process

Diffusion models are a type of generative Al that are
able to generate images. Their pipeline is split into two
main parts: the forward and backward diffusion process.
In the forward process the model gradually adds Gaussian
noise to the data, making it in the end undecipherable.
Then, in the backward process the model tries to learn how
to decipher the image by removing the previously added
noise.

More specifically, the forward process starts by sampling
a data point, z( from the real distribution 2 ~ ¢(z). Then
using a Markov chain, slowly through T steps, random
Gaussian noise is added to the sample. For each step there
is a noisy sample z;, producing a sequence, xi,...,ZT.
Approximate posterior distribution is given by (1).

T
q(zrrlze) = [NV ($t§ V1= Btmtfhﬁtl) (1
i=1

B is the variance schedule which defines the step size. As
the step ¢ becomes bigger, the original sample x( is no
longer distinguishable. When 1" — oo meaning z¢ is zr,
the sample x7 is transformed to pure Gaussian noise.

In order to run the backward diffusion process we need
to learn a model pg to approximate conditional probabil-
ities g(xt—1|xt). If we can sample from g(xi—1|xt), we
can recreate a true sample of the target distribution from
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Gaussian noise. Training starts with pure Gaussian noise
p(aT) := N(XT,0,I) where the model learns the joint
distribution pg

T
po(xo.r) = p(xz) [ [ po(xe—1lxt)

t=1

pe(th |Xt) = /\/(th1§ Ne(xta t)a EG(Xt, t))

@)

by maximizing the likelihood of training data

X1.7|X
Lvie = —Eq(xy) 10g po(x0) < Eg(xo.r) {log W]

The loss function is trying to make the probability
distribution P similar to reference distribution ). Meaning,
the model is trying to learn the distribution of the sample
distribution. This way, the model is able to reverse the
forward diffusion process and recreate true samples from
Gaussian noise.

The DLT model performs both continuous and discrete
diffusion as we need to determine both the coordinates
of the elements on the layouts and to what category
they belong to. Following sections look at some details
important for both continuous and discrete diffusion.

1) Continuous diffusion

The model applies the diffusion process on a set of all
bounding boxes in the layout, zo € RY**, where N is the
maximal number of components. The model F§(x¢, c, y:)
predicts g, as previously described, while also carrying
the class information g;. The final continuous diffusion
loss, Lippos, is reweighted and simplified, as formulated by

.

Libbox = B (zq,y0)~a(w.pole.t).te(0,1) U
“)
2) Discrete diffusion
For a class assignment, we need a discrete problem
setting with K categories, y € {1,...,K}". For the
forward denoising process, we need to use a Markov
transition matrix [Q];; = ¢%(y; = ily;—1 = j) with an
absorbing state as the K-th category [Mask]. For + < K,
the chosen matrix is:

[Qd)i; = {Bi’j when i = j 5

1— ;K ([Mask]) when i # j
and for i = K:
1 when j=K
L 6
(@il s {0 when j # K ©

If the sample is labeled as [Mask], it will not be changed.
However, if it still holds a component class label, then
with probability 1 — 3 it will be changed to [Mask],
and with probability 5 it will remain the same. When
T — oo, class labels will approximate yr = [Mask]",
meaning they will all be masked. In the reverse process,
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Fig. 2. DLT model scheme [19]

the model F¢ (x4, ¢, y;) predicts class probabilities of com-
ponents P?(yo|y:, ¢, ¢). The regular cross-entropy loss is
a reweighted function and formulated by (7).

Lets = E(yy z0)~a(yy.mole).tci0,] CE(FG (¢, ¢, y1), o)
(7N

3) Combined diffusion process

The final layout diffusion model samples both zy and
yo by applying the continuous and discrete process inde-
pendently. Hence the model is trained with a combined
objective:

Lmodel = )\1 * Lbboac + )\2 * Lcls- (8)

C. Model

The full DLT model is shown in Figure 2. The model Fy
uses a multi-layer Transformer encoder to learn the sample
distribution. The input of the transformer is embedded
time-step t, temp and a set of embedding vectors of
components where each represents one of the components
of a layout, C’ompr. The time embedding e, is a
result of a multi-layer perceptron (MLP) network. The
transformer encoder outputs an embedded representation
of components, C'omp,,. Then, these embeddings are fed
to a Linear layer representing the box and class head. The
output are values of bounding box coordinates and classes
of components.

D. Training and Testing Datasets

For our layout generation model, it is essential to have
information about the coordinates of UI components and
their respective class types. To facilitate this, we identified
three distinct datasets for comparison, Rico, Clay and
Huggingface datasets. These datasets share a common
structure: they include images of mobile applications’
user interfaces, along with associated bounding boxes and
classifications for the elements depicted in these images.
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The RICO dataset [21], with over 66k Android app
UI images, is extensive but presents challenges like com-
plex view hierarchies and inconsistent element types. We
have preprocessed it, focusing on the top 13 classes
and improving bounding box accuracy. The Google Clay
Dataset [22], a refined version of RICO, offers streamlined
classification with 27 UI elements and more accurate
bounding boxes. Additionally, the Huggingface Dataset,
featuring more contemporary Uls than the Rico and Clay,
simplifies its classification to six element types but risks
overgeneralization and faces challenges due to its smaller
size and high element density per screen.

E. Experiment settings

We set up experiment hyperparameters by following the
original DLT paper [19] where they used only Rico for
UI layout generation. Training was done over 800 epochs
with the batch size set to 16. Learning rate started at le-
4 and a cosine scheduler was used to adjust it over the
epochs. Depending on the dataset, there were different
number of class components. The transformer encoder was
trained with four layers, eight attention heads, and a latent
dimension of 512. For loss hyperparameters, A\; = 5 and
A2 = 1 were used. After testing the number of diffusion
steps for both continuous and discrete diffusion problems,
it was found that 7" = 100 and T" = 10, respectively, were
the best performing options. During training, we split 85%
of the datasets for training, 5% for validation, and 10%
for testing. RICO and Clay dataset had a maximum of 10
components on a single layout, while Huggingface dataset
could have up to 25.

When generating new alternate versions of an existing
Ul, we sampled n = 20 predictions from the model.

IV. RESULTS AND DISCUSSION
A. Metrics

Evaluation of the layout generation model was done
using 4 standard metrics used in this domain: Intersec-
tion over Union (IoU), Frechet Inception Distance (FID),
alignment, and overlap. IoU computes the average area
of overlap between any two bounding boxes in a layout.
Meaning, it is a score we can use in reference to how
diverse our results are. FID captures the similarity of
generated data to real ones in the feature space. It measures
the distributional distance of the generated layout to the
real layout. These metrics were chosen since they are the
most frequently used in layout generation and UI scoring
research [17], [19], [20]. Consequently, the theory behind
them is such that it makes sense that they would help detect
good UI design.

B. Results

For the Rico dataset, out of 42,080 newly generated UI
images, 455 (1.08%) of them were able to improve one of
the metrics. For Clay this was 330 out of 23,720 (1.39%)
and 190 out of 7,720 (2.46%) for the Huggingface dataset.
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Fig. 3. Visualization of three good results. From left to right: (1) original
U, (2) generated layout, and (3) rendered image of the UI with a new
layout.
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Fig. 4. Visualization of three bad results. From left to right: (1) original
UL (2) generated layout, and (3) rendered image of the UI with a new
layout.
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Fig. 5. Visualization of trends seen in results. Each image depicts a
generated layout from a different example. From top to bottom: (1)
centralized and aligned elements of similar size, (2) moving the button
to different corners, and (3) top menu bar well organized.

Rico and Clay had similar findings. With more com-
plex Uls, the model aimed for a balanced distribution of
larger elements around the screen’s center, often avoiding
clustering. There is a noticeable pattern in element sizing:
advertisements tend to be enlarged into larger rectangles,
while text buttons become narrower. Text at the bottom
usually retain their size and position. The most persistent
issue observed was element overlap. This was particularly
noticeable in Uls with numerous elements or those with
clustered layouts. Occasionally, the model established a
uniform size for all elements on a screen, leading to a
predominance of either long narrow rectangles or nearly
square shapes. This highlights the model’s approach to
UI design, though it also underscores the challenge of
managing element overlap in dense layouts.

The Huggingface dataset was significantly smaller than
Rico and Clay datasets, resulting in the model’s poorer
results. There are much fewer trends to be noticed and a
lot less symphony between components.

C. Discussion

Our model’s outputs reveal a promising ability to gener-
ate alternate versions of existing Uls as depicted in Fig.
3 and Fig. 5. These proposed layouts tend to establish
more common alignment points and centralize elements,
often resulting in designs with increased white space and
uniformly distributed elements of similar size. These char-
acteristics theoretically contribute to reduced visual com-
plexity, which is widely regarded as a beneficial attribute in
UI design. However, despite these theoretical advantages,
our findings indicate that genuinely visually appealing
generated Uls are exceedingly rare some of which can be

MIPRO 2024/BIS-BDP

] =
|
[e——————Ti _‘ ‘

—

Fig. 6. Visualization of some of the models shortcomings. Each image
depicts a generated layout from a different example. From top to bottom:
(1) inability to handle same element type in the center of the screen, (2)
grouping difficulties, and (3) poorer results with more elements.

seen in Fig. 4 and Fig. 6. This rarity is so pronounced
that it becomes difficult to attribute their occurrence to any
specific factor within our model’s framework.

A critical phase in our process is the transition from
layout generation to the actual rendering of the UI image.
This step involves reshaping and repositioning original
components according to the new layout predictions. While
the layouts provided insights into element positioning,
the rendered images highlighted the limitations of our
approach. Representing a Ul through just bounding boxes
and component classes oversimplifies the rich and nuanced
visual identities inherent in UI elements. For instance, a
button labeled "+" in the bottom right corner has a specific
function and established position, which our model often
overlooked. Similarly, repositioning elements like exit or
next buttons, marked "x" or ">", respectively, disregards
their conventional placement familiar to users. These ex-
amples highlight the complexity of element positioning and
sizing, which extends beyond what our current approach
can adequately capture.

The methodology of this work was chosen based on
significant research into the automation of UI/UX im-
provement. However, despite selecting what appeared to
be a promising method, we have obtained poor results.
While we did find some instances of Ul improvement
among our results, their scarcity cannot be overlooked.
Upon re-examining the original papers, we noticed that
they showcased only good examples without mentioning of
their rarity, leading us to question the representativeness of
these results for the overall model. Another way to evaluate
the model’s performance was by focusing on the metrics.
We were able to replicate results from [19], and the chosen
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method established benchmarks for IOU, alignment, and
FID metrics. Despite achieving metrics comparable to
established benchmarks, this did not necessarily translate
into the creation of aesthetically pleasing or functionally
superior Uls. Hence, we urge the field to strive for a more
transparent and accurate depiction of outcomes.

The datasets used in our study also pose significant chal-
lenges. While they provide basic information on element
position, size, and type, they often inaccurately represent
the actual Ul The critical need for high-quality, extensive
datasets in UI and UX optimization is evident. Our datasets
each had notable shortcomings, the biggest one being the
size. A larger and more diverse dataset, encompassing a
broader range of class types and adequately representing
each, might enable a more effective application of layout
generation for Ul improvement.

A step in the right direction of improving Uls with ma-
chine learning could be by using image diffusion models.
As discussed, in order to generate visually appealing Uls,
the model needs more information and should develop a
more complex representation of the problem. Instead of
representing the Uls with bounding boxes, class types and
coordinates, perhaps detailed text descriptions could offer
more insight. A recent paper utilized text descriptions of
Uls to help their diffusion model learn how to generate a
UI [23]. Such models, which incorporate richer contextual
information, might offer a more effective representation of
Uls.

V. CONCLUSION

This paper represents a step towards understanding and
enhancing user interfaces through the lens of machine
learning. Our research has demonstrated the potential of us-
ing layout generation diffusion models to create alternative
and improved versions of existing user interfaces. This new
approach in the field of UI design shows signs of becoming
a significant tool for interface enhancement. However it is
also apparent that the field is at it’s beginnings.

The challenge of accurately and effectively representing
and enhancing a Ul might require a more nuanced and
comprehensive approach than currently employed methods.
As the saying goes "an image is worth a thousand words",
so perhaps trying to somehow represent an image of an Ul
in anything less than a thousand words is too simple of an
approach. Future research in this area would benefit from
exploring more intricate approaches, taking into account
the multifaceted nature of user interface design and user
experience.

This work contributes to the broader understanding of
how machine learning can be effectively integrated into the
field of UI design. As technology continues to advance
and user expectations evolve, we hope that the insights
and methodologies presented in this paper will help gain
an understanding of what is needed for advancing the
automation of user interface design.

240

(1]

[2]

[3]
[4]

[3]

[6]

[71

[8]
[9]

[10]

(11]

[12]

[13]

[14]
[15]

(16]

(17]

[18]

[19]

(20]

(21]

[22]

[23]

REFERENCES

K. O. A. N. Tuch, J. a. Bargas-Avila, “Symmetry and aesthetics
in website design: It’s a man’s business,” Comput. Human Behav.,
2010.

J. S. A. Sonderegger, “The influence of design aesthetics in usability
testing: effects on user performance and perceived usability.” Appl.
Ergon., 2010.

M. C. F. Alsudani, “The effect of aesthetics on web credibility,”
British Computer Society, 2009.

D. R. S. C. Salimun, H. C. Purchase, “The effect of aesthetically
pleasing composition on visual search performance,” Conf. Human-
Computer Interact., 2010.

statcounter. (2024) Desktop vs mobile vs tablet market
share worldwide. [Online]. Available: https://gs.statcounter.com/
platform-market- share/desktop-mobile-tablet

W. C. Wang and L. Moutinho, Human-Computer Interface in
Marketing. John Wiley Sons, Ltd, 1 2015. [Online]. Available:
http://doi.wiley.com/10.1002/9781118785317.weom090132

D. Norman and J. Nielsen, “The definiton of user experience
(ux),” 2021. [Online]. Available: https://www.nngroup.com/articles/
definition-user-experience/

W. Lidwell, K. Holden, and J. Butler, Univerzalna nacela dizajna.
Rockport Publishers, Inc., 2010.

B. Shneiderman, “The eight golden rules of interface design,” 2016.
[Online]. Available: https://www.cs.umd.edu/users/ben/goldenrules.
html

N. Gaal, “Ux psychology go hand in
hand— how gestalt theory appears in ux
design,”  2017.  [Online].  Available:  https://uxdesign.cc/

ux-psychology-go-hand-in-hand-how- gestalt-theory-appears-in-ux-design- 18b727:

D. C. L. Ngo, L. S. Teo, and J. G. Byrne, “Modelling interface
aesthetics,” Information Sciences, vol. 152, pp. 25-46, 2003.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0020025502004048

W. C. Kim and J. D. Foley, “Providing high-level control and
expert assistance in the user interface presentation design,” ser.
CHI ’93. New York, NY, USA: Association for Computing
Machinery, 1993, p. 430-437. [Online]. Available: https://doi.org/
10.1145/169059.169346

B. V. Zanden and B. A. Myers, “Automatic, look-and-feel
independent dialog creation for graphical user interfaces,” in
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’90. New York, NY, USA:
Association for Computing Machinery, 1990, p. 27-34. [Online].
Available: https://doi.org/10.1145/97243.97248

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2022.

J. Li, J. Yang, A. Hertzmann, J. Zhang, and T. Xu, “Layoutgan:
Generating graphic layouts with wireframe discriminators,” 2019.

K. Gupta, J. Lazarow, A. Achille, L. Davis, V. Mahadevan, and
A. Shrivastava, “Layouttransformer: Layout generation and com-
pletion with self-attention,” 2021.

J. Li, J. Yang, A. Hertzmann, J. Zhang, and T. Xu, “Layout-
gan: Synthesizing graphic layouts with vector-wireframe adversarial
networks,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PP, pp. 1-1, 01 2020.

A. Sobolevsky, G.-A. Bilodeau, J. Cheng, and J. L. C. Guo,
“Guilget: Gui layout generation with transformer,” 2023.

E. Levi, E. Brosh, M. Mykhailych, and M. Perez, “DIt: Conditioned
layout generation with joint discrete-continuous diffusion layout
transformer,” 2023.

S. Chai, L. Zhuang, and F. Yan, “Layoutdm: Transformer-based
diffusion model for layout generation,” 2023.

B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the 30th Annual
Symposium on User Interface Software and Technology, ser. UIST
’17, 2017.

G. Li, G. Baechler, M. Tragut, and Y. Li, “Learning to denoise raw
mobile ui layouts for improving datasets at scale,” 2022.

J. Wei, A.-L. Courbis, T. Lambolais, B. Xu, P. L. Bernard,
and G. Dray, “Boosting gui prototyping with diffusion models,”
in 2023 IEEE 3lst International Requirements Engineering
Conference (RE). IEEE, Sep. 2023. [Online]. Available: http:
//dx.doi.org/10.1109/RE57278.2023.00035

MIPRO 2024/BIS-BDP





