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Abstract — With the digitization of sales and marketing, 

growth of online platforms, and e-commerce, businesses are 

now able to operate globally with ease and fewer restrictions. 

Expanding customer reach also means handling larger data 

volumes, which is often addressed through automation. Many 

companies now utilize data pipelines and advanced AI 

systems for analytics, operational optimization, faster and 

improved decision-making. This paper will explain in details 

the creation of an automated lead enrichment pipeline for 

B2B that focuses on ease of implementation and deployment. 

Employing a web data extraction tool, machine learning for 

website classification, a cloud-based database, and an 

automation and orchestration tool, the software provides a   

readily implementable solution for smaller enterprises to 

build and deploy. 

Keywords - automation; data enrichment; machine 

learning; natural language processing;  

I.  INTRODUCTION 

Digitization and increasing popularity of e-commerce 
platforms makes operating globally easier for many 
companies, but accessing a broader customer base comes 
with additional challenge of managing larger data volumes. 
As a result, many businesses now depend on automation, 
complex data pipelines, and AI for analytics and 
operations. While effective data utilization helps with 
strategic decision making, and offers a competitive edge 
and insights into market trends for business growth, 
disparities in AI and automation adoption persist across 
businesses and present challenges for some teams.  

The 2022 IBM Global AI Adoption Index [1] revealed 
a significant gap between larger and smaller companies in 
AI implementation. Smaller teams encounter problems in 
the adoption of data tech stack. They are limited by 
financial and human resources, integration complexities 
and difficulty in balancing immediate needs with long-term 
goals in data stack implementation. Additionally, projects 
in smaller businesses are often impacted by the gap 
between the ever-advancing tools used by Big Tech, and 
the reality of executing such projects within smaller 
organizations and their infrastructure. 

 Moreover, the volumes of some businesses might not 
often justify the investment needed for complex and latest 
technologies [2]. Because of this, cost-effective, easier to 

manage and fast to deploy tools can be an optimal solution 
for enterprises seeking to integrate automation and AI into 
their operational workflows. 

Focusing on technologies that do not require complex 
infrastructure, this paper describes the process of creating 
and deploying a data enrichment pipeline that uses 
automation and machine learning to extract, process and 
load necessary data to be used by a business for their needs. 
The result is a lead enrichment pipeline with components 
like CRM software, web data extraction tool, a hosted 
machine-learning model and a cloud-based database for 
data storage that can be used by an organization to enrich 
their internal data on leads to be used by the sales, 
marketing or other teams. 

First, the process extraction of web data is discussed, 
along with some of the most common tools and techniques 
of collecting web data. The chapter covers the nuances of 
extracting textual data on the web, and the differences of 
processing traditional structured corpus and text on the 
web. Next, the work describes the process used to extract 
the textual and metadata features for the software. 
Additionally, model training, algorithm choice, 
experimentation and results are covered as well. 

The paper follows with an overview of the pipeline 
automation, focusing on the utilized software, the 
architecture and underlying infrastructure. The study covers 
the process and outcomes associated with the 
implementation of such software, followed by limitations 
and suggestions for deployment. 

II. EXTRACTION OF WEB DATA 

Lead data enrichment enhances business client profiles 
by adding relevant details like industry, revenue, and 
technology stack, or other important information [3] [4]. 
This process aids in tailoring sales and marketing 
strategies, identifying high-potential prospects, improving 
market knowledge, and enhancing conversions and 
partnerships. It can also be important for a smaller 
organization that need to create a database of potential 
prospects at the start of operations. Often, enrichment 
process involves dedicated teams extracting data from 
reliable sources and updating databases, performing quality 
checks. More recently, data extraction and enrichment 
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processes are becoming automated as manual efforts are 
unable to cope with the amount of incoming data. 

A. Web Data Extraction 

Web scraping involves extracting data from the World 
Wide Web and saving it to a destination, like a database, 
for analysis or retrieval [5]. This process includes making 
HTTP requests to the data source, retrieving the resource in 
various formats (HTML, XML, JSON). After this, the 
retrieved data can be processed in an integration (ETL) or 
ingestion (ELT) process for business use.  

While multiple solutions exist online, organizations 
might choose to depend on their internal teams for their 
web scraping needs. At the cost of a more complex 
infrastructure needs, handling the process internally allows 
for more precise customization of the scraping project for 
business goals. Additionally, internal teams are also more 
familiar with processes and objectives, and are able to tailor 
solutions to specific requirements and unique cases. 

B. Libraries and Tools 

Multiple tools exist for web scraping projects and 
parsing of web data [6]. Some of the most popular are 
urllib.request [7] library for HTTP requests, BeautifulSoup 
[8], a Python library known for its simplicity in parsing 
HTML and XML documents, Scrapy [9] for more 
advanced needs, Apache Nutch [10] for Big Data 
applications with complex architectures, and lxml [11] for 
parsing and manipulating structured HTML and XML data. 
While some may entail unnecessary overhead for smaller 
projects due to intricate setup and technical demands, 
simpler tools such as requests can, often at the cost of 
limited functionality, offer quicker setup and execution for 
smaller teams without the complexity of robust 
frameworks. 

After comparing the functionalities of all, the choice 
was made to use using BeautifulSoup paired with the 
requests library. The choice does not only stem from the 
ease of implementation and user-friendliness of both tools, 
but also from practical reasons. In broad crawling, multiple 
websites are scraped instead of a crawler extracting data 
from a single website and all of its pages. As a result, the 
web data extraction tool navigates various websites with 
distinct structures and content, some of which may be 
poorly formatted. With the challenges of handling variable 
website structures and potential formatting issues, the 
robust parsing capabilities of BeautifulSoup proved to be 
essential, and the capacity to handle imperfect HTML made 
it an optimal parsing choice. 

On the other hand, the requests library is optimal for 
most scraping projects due to its simplicity, flexibility, and 
ease of use. It provides a straightforward interface for 
making HTTP requests, handling cookies, and managing 
sessions, making it well-suited for most web scraping tasks. 
Additionally, it integrates seamlessly with other Python 
libraries. The lightweight nature of requests makes it 
efficient for basic scraping needs without unnecessary 
overhead. 

The scraper, designed for broad crawling, was 
developed with custom multi-threading functionality to 

enhance web scraping speed by processing requests 
simultaneously, utilizing available CPU cores. The 
maximum number of threads was set at 30, dynamically 
adjusted based on the incoming data to prevent resource 
over-allocation. 

C. Text Parsing 

The text and metadata used for website classification 
were parsed and stored in a separate database during the 
initial request to reduce repetitive requests to the website. 
The contact page was preferred for contact information, 
and the home page served as a fallback for missing data. 
Contact page was detected using text parsing techniques in 
Python. If not detected, or a request fails, a home page was 
used. 

There is a lot of text on a website, not limited to the text 
visible to a website visitor. The HTML structure, consisting 
of headings, paragraphs, and semantic tags, provides 
valuable insights into a business [12].  Navigation elements 
like menus and presence of shopping carts can provide 
further clues, for example whether or not a website uses e-
commerce functionalities. Additionally, metadata often 
consist of information created for search engines and SEO 
purposes, and play a crucial role in page ranking. This can 
be utilized for a lot of cases, and extraction of web page 
content, specifically the title, metadata descriptions, and 
keywords, could yield meaningful features for 
classification. Metadata can also offer insights into 
languages, locale, and the intended audience or geographic 
region of a company. However, meta tags might not always 
prove to be the best case to use for all web classification 
projects, as many meta tags are often ignored by modern 
websites, which might make them unreliable for some 
cases [13].  

The web data were extracted using text parsing and 
processing techniques in Python. Text extraction and e-
commerce detection was done using a combination of 
Python string parsing, Regular Expression (RegEx) 
functions, and BeautifulSoup HTML parsing were used. 

III. WEB TEXT CLASSIFICATION 

Web content classification often involves visiting web 
pages to categorize them based on their content. This can 
be done manually, but this can be slow and inconsistent. To 
address the growing need for efficient classification, 
machine learning and automation have emerged as 
solutions. Typically, a website's home page suffices for 
classification, summarizing the business's purpose and page 
content. For other cases, more pages might be necessary. 
For example, e-commerce sites may prioritize shop and 
product pages, but in most scenarios the home page can 
provides sufficient data for classification.  

Despite various experiments with different features for 
classifying web content, the use of text on web pages 
remains a prevalent approach. The main benefit of using 
textual data on the web is the ease and speed of extraction, 
its reliability, and a wider choice of classification 
algorithms that can be used to obtain desired results. 

For the software, language detection was utilized to 
filter non-English content before processing. The web 
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scraper extracts business details, social media profiles, 
descriptions, phones, emails, and software information. The 
scraper was created to ensure that only two requests are 
made per a single website, avoiding server overload.  

Home page text, including titles, tables, and paragraphs.  
Additionally, web links were extracted for detection of 
contact or shop pages. The scraper also extracted necessary 
metadata like web page title, description, and keywords 
that can be very useful for categorization as they often 
describe the main topic of the website and the company and 
are used for SEO purposes. In theory, these tags can 
provide more valuable information to a classifier text on 
the home page, given their purpose to describe the nature of 
the website. Having this in mind, a decision was made to 
experiment and train the model on web page text, metadata 
tags, as well as the text extracted from the <img> tags  that 
often contains a textual description of the website’s images. 

In the Table I, the distribution of categories and the top 
10 most words per category are shown. 

A. Model Training 

For classification, a selection of five algorithms was 
chosen based on past studies, the dataset characteristics, 
and their varying complexities. The algorithms compared 
were support vector machines, multinomial logistic 
regression, random forest classifier, a perceptron one layer 
neural network model as well as a passive-aggressive 
classifier online-learning algorithm similar to the 
perceptron [14]. 

The two text representation techniques, TF-IDF and 
word embeddings , were used and their performances were 
compared in all tested models.  For word representation, 
the Gensim library [15], using Word2Vec embeddings, was 
employed. Having gained popularity in 2013, word 
embeddings revolutionized the field of natural language 
processing, offering a word representation that can help 
capture some meaning in the corpus [16]. Trained from 
scratch with default parameters (vector size 100, window 
size 5, minimum count 5), the Skip-Gram algorithm, 
predicting context words from a target word, was then 
chosen for its effectiveness in representing multiple word 
meanings and rare words.  

Hyperparameter tuning was done for all models using 
RandomizedSearchCV hyperparameter combinations, and 
cross-validation. For TF-IDF, the vectorizer and the 
classifier were tuned. For Word2Vec, the neural network 
embedding model was trained, but only the final classifier 
was tuned. 

B. Model Results 

The experimentation step revealed that linear models 
like multinomial logistic regression, perceptron, and 
passive-aggressive classifier favored TF-IDF text 
representation technique, while non-linear algorithms like 
SVC with a non-linear kernel and random forest classifier 
performed better with Word2Vec embeddings. 

Based on the results of all models, the passive-
aggressive classifier was selected as the final model, with 
TF-IDF representation of text. On the given problem, the 

default model with TF-IDF achieved a cross-validated 
score of 0.688 and 0.697 after hyperparameter tuning. 

TABLE I.  TOP 10 MOST COMMON WORDS FOR EACH CATEGORY 

 

Category Name Top 10 Most Common Words 

Travel 'hotels', 'pm', 'travel', 'flight', 

'book', 'hotel', 'holiday', 'new', 

'offer', 'resort' 

Social Networking 

and Messaging 

'chat', 'online', 'use', 'free', 'be', 

'room', 'new', 'get', 'app', 'service' 

Streaming Services 'video', 'stream', 'be', 'new', 

'watch', 'get', 'tv', 'apple', 'live', 

'use' 

Sports 'be', 'league', 'sport', 'cup', 'world', 

'new', 'bet', 'news', 'team', 

'football' 

News 'be', 'news', 'new', 'world', 'pm', 

'us', 's', 'say', 'august', 'sep' 

Photography 'photography', 'camera', 'image', 

'photo', 'use', 'new', 'work', 'be', 

'get', 'one' 

Law and 

Government 

'state', 'form', 'close', 

'organisation', 'information', 'new', 

'government', 'be', 'service', 'act' 

Health and Fitness 'cancer', 'health', 'be', 'cells', 'use', 

'get', 'body', 'care', 'test', 'help' 

Games 'game', 'chess', 'be', 'play', 'new', 

'amp', 'download', 'page', 'news', 

'one' 

E-Commerce 'car', 'insurance', 'n', 'cheapest', 'c', 

'tip', 'd', 'shop', 'a', 'gift' 

Forums 'be', 'new', 'book', 'post', 'read', 

'ago', 'august', 'one', 'use', 'aug' 

Food 'recipes', 'recipe', 'be', 'make', 

'food', 'yang', 'cook', 'dan', 'indian', 

'read' 

Education 'science', 'be', 'learn', 'use', 'online', 

'university', 'us', 'new', 'students', 

'research' 

Computers and 

Technology 

'use', 'be', 'new', 'make', 'c', 'one', 

'get', 'file', 'work', 'program' 

Business/Corporate 'bank', 'service', 'business', 'us', 

'market', 'august', 'home', 'use', 

'read', 'financial' 

 

 

Once the best model was selected from the candidates, 
further experimentation involved testing whether adding 
metadata content helped the classifier improve its 
performance and whether metadata was a reliable feature 
should a web page not have any home text available. 
Further experiments tested the impact of using metadata 
(keywords, description, and <img> alt attribute) on model 
performance, exploring their potential use as alternatives 
when the scraper fails to extract any text from the home 
page. The experiment results revealed multiple things. 
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First, the addition of img <alt> tag textual information 
worsened the model results, adding a lot of image specific 
noise that is irrelevant to general topic of the website. On 
the other hand, keywords and description meta tags on their 
own proved to be sufficient for model training and 
provided similar model performance, but because keyword 
tags are no longer a requirement from most modern search 
engines - they are often omitted from many modern 
websites, making them unreliable for classification as the 
only feature source. Combining the best aspects of both, the 
final model was trained on the home page text, as well as 
the description and keyword tags, which improved model 
performance, provided the model more data to train on, and 
also offered alternatives for sources of text. For example, if 
a web scraper fails to extract or the home page text is too 
short or missing - metadata and keywords can provide 
additional content. Because metadata are part of the HTML 
structure, they load independently of the rest of the page. 
Due to this, using it also provides a reliable fallback option 
for dynamically generated web content that cannot be 
scraped using requests and similar libraries without a 
headless browser. 

Testing the final model trained on home page text, 
keywords and description on unseen data resulted in the 
final macro f1 score of 0.737.  

C. Observations 

The results highlight the effectiveness of simple but 
robust text representation techniques such as TF-IDF in 
classifying web content, but also the particularities of 
working with textual data from the web. Specifically, web 
scraped data often lacks relationships between its 
components.  

Given the challenges of poorly structured HTML and 
media-rich websites, good preprocessing is crucial to 
remove noise from web scraped data. This makes web text 
classification distinct from traditional text classification, 
and final corpus consists of many individual words, titles, 
and sentences that might be thematically related but do not 
often form a meaningful corpus. Because of this, 
Word2Vec models, based on co-occurrence patterns, 
struggled to capture document-specific information.  While 
it is the ability to understand context that once made 
embedding models so popular, for this problem simpler 
bag-of-words models proved more suitable. Additionally, 
the size of the dataset could also hinder the power of 

Word2Vec, making simpler algorithms better for the task.  

IV. PIPELINE AUTOMATION 

A. Software Choice 

MongoDB [17] was selected as the database for the 
software. It is a good choice for building a data pipeline 
due to its flexibility, ease of use, and ability to handle 
datasets efficiently. The setup does not require extensive 
infrastructure and hardware resources, making it optimal 
choice for both small and large projects. Its NoSQL 
database is beneficial when working with data sets that 
evolve or change frequently. It can store data with varying 
structures in the same database without major schema 
modifications. It stores data in a document format, making 
it well-suited for representing datasets with complex or 
hierarchical structures. The main reason for choosing 
MongoDB instead of relational databases lies in the fact 
that the data used in the pipelines and CRM are utilized 
through APIs based on JSON. As MongoDB is a document 
database which works with semi-structured data without 
additional object-relational mapping, mitigating additional 
mapping overhead in the system. 

Apache Airflow [18] was used as an orchestration tool. 
It is an open-source platform revolutionizing automation by 
orchestrating complex workflows across distributed system 
components. Using Directed Acyclic Graphs (DAGs), 
Airflow allows users to define task sequences, 
dependencies, and execution conditions, facilitating 
automation of processes like data extraction and 
transformation [19]. Its user-friendly interface and modular 
architecture make it accessible and support step-by-step 
automation, while connectors enable integration with 
various data sources, databases, APIs, and cloud services. 
Companies can efficiently automate tasks, enhance data 
processing, and scale their automation efforts gradually 
with Airflow. 

The software was deployed using containerization, 
ensuring consistent and reproducible environments and 
improving resource utilization.  

B. Architecture  

A high-level architecture diagram is shown on the 
Figure 1. A CRM system stores original data and is used by 
the sales and marketing teams, as well as anyone in the 
company managing leads. URLs entering the CRM can be 

 

Figure 1.  A high-level architecture diagram of the software. 
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added manually or collected through various channels, 
including social media marketing, form integration on 
company websites, and or embedded forms, or other 
sources. 

This acts as a starting point for the pipeline and stores a 
list of website URLs to be processed. The data also has a 
unique identifier field and last scraped date to allow 
tracking processed leads, but also for teams working with 
the CRM to be able to assess the freshness of the data and 
understand how recently the lead was updated. 

The CRM automatically updates a last updated column 
if a team member manually edits a lead or if any other 
changes have been made. The scrape timestamp is kept 
separate from this logic to allow for correct tracking of 
automated data updates. If a team member updates a 
property of a lead – the pipeline will not overwrite the data, 
unless instructed. 

Each pipeline step is represented as an Airflow task. 
Scheduling options allow users to automate pipeline 
execution at regular intervals, such as hourly or daily. The 
user-friendly interface permits manual task runs before the 
scheduled time, if necessary.  

Airflow can handle task failures, send notifications, log 
errors, or perform specified actions based on requirements. 
If a task fails, data are scraped on the next scheduled run. A 
retry mechanism was not implemented in the current scope 
of the software. 

The DAG defines the schedule for the pipeline to run 
and four PythonOperator tasks representing each of the 
four steps of the pipeline. For this pipeline, a daily run was 
scheduled. Since each task fetches data from a source, 
processes those data, and pushes them to the next location – 
the code is designed to succeed if there are no new items to 
process. This also covers cases where no new leads have 
been added during the previous day, and all the leads have 
already been processed. 

To decide whether there are any leads to process, the 
data are fetched from the CRM in the first task. A 
scrape_date field is used as a reference to ensure that 
documents that have been scraped before will not be passed 
through the rest of the pipeline, unless marked to do so. 
The task will also insert into the CRM only the documents 
that do not share the same unique identifier with any 
document in that collection, which is set to be scraped 
using a property called to_scrape. All other tasks use a 
Boolean sync property in each document in a MongoDB 
collection stored by the previous task.  

The second task accepts incoming leads and sends them 
through a web data extraction tool to gather contact details, 
phone numbers, social media links, and additional data. 
This script also identifies used software, detects e-
commerce platforms, and tags leads based on their business 
type - such as whether or not the business is an e-commerce 
business. This task uses to_scrape properly to filter out and 
process leads that should be scraped. The next task 
performs classification by running the machine learning 
model on the incoming text. The classification task is only 
processing websites whose document has to_categorize 
property set to True. Finally, the final task task pushes the 
processed and enriched properties to the CRM.  

The synchronization allows to save on computational 
time that is billed by cloud platforms based on duration and 
avoids processing all items every time. The setup also helps 
preserve data in the event of a task failure. On the next 
successful run, the pipeline detects whether there are any 
documents that have not been processed in the previous 
run. Should a user need historical data, this can be obtained 
by accessing the data in the MongoDB collection.   

The file used for software extraction mapping is also 
stored in the same folder during the text parsing step and 
can be updated to adapt the extraction to business needs - 
for example, if detection of different software is needed. 

MongoDB stores data as documents that are stored in 
three collections - one for the incoming links, another one 
with enriched data and scraped output, with all the enriched 
data including the full-page text needed for classification. 
A third collection stores the final enriched data, that no 
longer includes the textual information, but includes the 
final predicted category for the website. This data are then 
fed to the CRM. 

In each collection MongoDB automatically creates an 
id field for each document. This acts as a unique internal 
identifier and has a significant analytical value as it stores 
the hashed timestamp of the object creation. This makes it 
possible to use it for future analysis, track metrics and 
historical data over time.  

Configuration parameters governing the parallelism and 
concurrency within the workflow execution were adapted 
for the use case. The maximum number of task instances 
allowed to run concurrently across all DAGs, allowing only 
one task instance can execute at any given time. Maximum 
number of active DAG runs that can be executed 
simultaneously for each DAG were also set to 1, indicating 
that only one instance of a particular DAG can be active at 
any given time. The maximum number of active task 
instances that can be executed concurrently within a single 
DAG were set to 4, allowing up to 4 tasks within the same 
DAG to execute concurrently. 

These settings help control the degree of parallelism 
and resource utilization within Airflow, allowing users to 
fine-tune the execution behavior based on their specific 
requirements and resource constraints. Allowing only one 
DAG to run at a time helped ensure there is no accidental 
parallel running of the pipeline which could create clashes 
because of simultaneous insertions. 

V. LIMITATIONS 

The software and machine learning solution have 
certain limitations. Firstly, the classifier was trained on a 
specific sample of websites with 15 categories. If a website 
from a different category enters the pipeline, the model will 
try to classify it into one of the defined categories. While 
this is needed by some businesses, it might not be suitable 
for other needs.  

Another constraint of the model is its reliance on an 
English corpus, limiting its performance to English-
language websites. Given the diversity of languages on the 
web, businesses dealing with local companies may 
encounter challenges. To improve data quality and avoid 
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running the model on languages other than English, a 
language detection library lingua-py [20] was utilized in 
the study. Alternative solutions, such as using a translation 
API before model input, exist, but they can be costly for 
extensive texts and are influenced by translation quality. 
For best results, it is recommended to train separate models 
for each language or use a multilingual model. 

Another limitation of the study is its exclusive focus on 
training a model from scratch, without exploring transfer 
learning and pre-trained model fine-tuning. While 
acknowledging the potential of such methods, this was not 
the primary focus of this work. 

As the company expands, scalability and performance 
become priorities. The web scraper is adjusted with 
multithreading for handling more input URLs. Yet, the 
Machine Learning model's prediction for each pipeline 
item might still slow the process down.  To address this, 
future scaling can involve using tools like Kubernetes to 
distribute the computational workload. 

In deployment, managing data storage and size is 
crucial. Storing textual data for prediction in a separate 
collection may eventually result in significant storage 
requirements, potentially reaching hundreds of gigabytes. 
Future considerations may involve compression or deletion 
of text used solely for classification, as it is unnecessary for 
enrichment. 

The software can be extended to automatically update 
data on a scheduled basis. For instance, implementing a 
rule could trigger the pipeline to enrich companies not 
updated within a set period, ensuring CRM data stay 
current. However, this feature was not implemented in this 
study. Furthermore, integration of external APIs and other 
data sources into the pipeline can enhance the CRM's 
completeness by providing additional company 
information. 

The pipeline is deployed using containers, making it 
ready for fast deployment on any cloud provider or an on-
premises server. However, more extensive testing is 
required for high-scale deployments to ensure the software 
meets desired quality standards and produces the expected 
outcome.  

VI. CONCLUSION 

Creating a deployable data processing and enrichment 
pipeline with an internal web extraction tool, a cloud-based 
database, and an open-source scheduling platform can be a 
solution for businesses aiming to avoid substantial upfront 
investments or lacking large internal technical expertise. 
The experiment demonstrates that, despite the limitations, it 
is possible to create and deploy a reliable, tailored software 
that can be used by companies seeking to leverage their 
data for automated data ingestion pipelines with machine 
learning, without the need for complex infrastructure. 
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