
Data Enrichment Pipeline Model for Web

Classification Based on Web Scraping and

Machine Learning

Evegeniya Samsonova *, Zlatan Morić *, Goran Gvozden *, **, Tomislav Hlupić *, **
*
 Algebra University, Zagreb, Croatia

**
 Poslovna inteligencija, Zagreb, Croatia

evgeniya.samsonova@algebra.hr, zlatan.moric@algebra.hr, goran.gvozden@inteligencija.com,

tomislav.hlupic@inteligencija.com

Abstract — With the digitization of sales and marketing,

growth of online platforms, and e-commerce, businesses are

now able to operate globally with ease and fewer restrictions.

Expanding customer reach also means handling larger data

volumes, which is often addressed through automation. Many

companies now utilize data pipelines and advanced AI

systems for analytics, operational optimization, faster and

improved decision-making. This paper will explain in details

the creation of an automated lead enrichment pipeline for

B2B that focuses on ease of implementation and deployment.

Employing a web data extraction tool, machine learning for

website classification, a cloud-based database, and an

automation and orchestration tool, the software provides a

readily implementable solution for smaller enterprises to

build and deploy.

Keywords - automation; data enrichment; machine

learning; natural language processing;

I. INTRODUCTION

Digitization and increasing popularity of e-commerce
platforms makes operating globally easier for many
companies, but accessing a broader customer base comes
with additional challenge of managing larger data volumes.
As a result, many businesses now depend on automation,
complex data pipelines, and AI for analytics and
operations. While effective data utilization helps with
strategic decision making, and offers a competitive edge
and insights into market trends for business growth,
disparities in AI and automation adoption persist across
businesses and present challenges for some teams.

The 2022 IBM Global AI Adoption Index [1] revealed
a significant gap between larger and smaller companies in
AI implementation. Smaller teams encounter problems in
the adoption of data tech stack. They are limited by
financial and human resources, integration complexities
and difficulty in balancing immediate needs with long-term
goals in data stack implementation. Additionally, projects
in smaller businesses are often impacted by the gap
between the ever-advancing tools used by Big Tech, and
the reality of executing such projects within smaller
organizations and their infrastructure.

 Moreover, the volumes of some businesses might not
often justify the investment needed for complex and latest
technologies [2]. Because of this, cost-effective, easier to

manage and fast to deploy tools can be an optimal solution
for enterprises seeking to integrate automation and AI into
their operational workflows.

Focusing on technologies that do not require complex
infrastructure, this paper describes the process of creating
and deploying a data enrichment pipeline that uses
automation and machine learning to extract, process and
load necessary data to be used by a business for their needs.
The result is a lead enrichment pipeline with components
like CRM software, web data extraction tool, a hosted
machine-learning model and a cloud-based database for
data storage that can be used by an organization to enrich
their internal data on leads to be used by the sales,
marketing or other teams.

First, the process extraction of web data is discussed,
along with some of the most common tools and techniques
of collecting web data. The chapter covers the nuances of
extracting textual data on the web, and the differences of
processing traditional structured corpus and text on the
web. Next, the work describes the process used to extract
the textual and metadata features for the software.
Additionally, model training, algorithm choice,
experimentation and results are covered as well.

The paper follows with an overview of the pipeline
automation, focusing on the utilized software, the
architecture and underlying infrastructure. The study covers
the process and outcomes associated with the
implementation of such software, followed by limitations
and suggestions for deployment.

II. EXTRACTION OF WEB DATA

Lead data enrichment enhances business client profiles
by adding relevant details like industry, revenue, and
technology stack, or other important information [3] [4].
This process aids in tailoring sales and marketing
strategies, identifying high-potential prospects, improving
market knowledge, and enhancing conversions and
partnerships. It can also be important for a smaller
organization that need to create a database of potential
prospects at the start of operations. Often, enrichment
process involves dedicated teams extracting data from
reliable sources and updating databases, performing quality
checks. More recently, data extraction and enrichment

MIPRO 2024/BIS-BDP 229

processes are becoming automated as manual efforts are
unable to cope with the amount of incoming data.

A. Web Data Extraction

Web scraping involves extracting data from the World
Wide Web and saving it to a destination, like a database,
for analysis or retrieval [5]. This process includes making
HTTP requests to the data source, retrieving the resource in
various formats (HTML, XML, JSON). After this, the
retrieved data can be processed in an integration (ETL) or
ingestion (ELT) process for business use.

While multiple solutions exist online, organizations
might choose to depend on their internal teams for their
web scraping needs. At the cost of a more complex
infrastructure needs, handling the process internally allows
for more precise customization of the scraping project for
business goals. Additionally, internal teams are also more
familiar with processes and objectives, and are able to tailor
solutions to specific requirements and unique cases.

B. Libraries and Tools

Multiple tools exist for web scraping projects and
parsing of web data [6]. Some of the most popular are
urllib.request [7] library for HTTP requests, BeautifulSoup
[8], a Python library known for its simplicity in parsing
HTML and XML documents, Scrapy [9] for more
advanced needs, Apache Nutch [10] for Big Data
applications with complex architectures, and lxml [11] for
parsing and manipulating structured HTML and XML data.
While some may entail unnecessary overhead for smaller
projects due to intricate setup and technical demands,
simpler tools such as requests can, often at the cost of
limited functionality, offer quicker setup and execution for
smaller teams without the complexity of robust
frameworks.

After comparing the functionalities of all, the choice
was made to use using BeautifulSoup paired with the
requests library. The choice does not only stem from the
ease of implementation and user-friendliness of both tools,
but also from practical reasons. In broad crawling, multiple
websites are scraped instead of a crawler extracting data
from a single website and all of its pages. As a result, the
web data extraction tool navigates various websites with
distinct structures and content, some of which may be
poorly formatted. With the challenges of handling variable
website structures and potential formatting issues, the
robust parsing capabilities of BeautifulSoup proved to be
essential, and the capacity to handle imperfect HTML made
it an optimal parsing choice.

On the other hand, the requests library is optimal for
most scraping projects due to its simplicity, flexibility, and
ease of use. It provides a straightforward interface for
making HTTP requests, handling cookies, and managing
sessions, making it well-suited for most web scraping tasks.
Additionally, it integrates seamlessly with other Python
libraries. The lightweight nature of requests makes it
efficient for basic scraping needs without unnecessary
overhead.

The scraper, designed for broad crawling, was
developed with custom multi-threading functionality to

enhance web scraping speed by processing requests
simultaneously, utilizing available CPU cores. The
maximum number of threads was set at 30, dynamically
adjusted based on the incoming data to prevent resource
over-allocation.

C. Text Parsing

The text and metadata used for website classification
were parsed and stored in a separate database during the
initial request to reduce repetitive requests to the website.
The contact page was preferred for contact information,
and the home page served as a fallback for missing data.
Contact page was detected using text parsing techniques in
Python. If not detected, or a request fails, a home page was
used.

There is a lot of text on a website, not limited to the text
visible to a website visitor. The HTML structure, consisting
of headings, paragraphs, and semantic tags, provides
valuable insights into a business [12]. Navigation elements
like menus and presence of shopping carts can provide
further clues, for example whether or not a website uses e-
commerce functionalities. Additionally, metadata often
consist of information created for search engines and SEO
purposes, and play a crucial role in page ranking. This can
be utilized for a lot of cases, and extraction of web page
content, specifically the title, metadata descriptions, and
keywords, could yield meaningful features for
classification. Metadata can also offer insights into
languages, locale, and the intended audience or geographic
region of a company. However, meta tags might not always
prove to be the best case to use for all web classification
projects, as many meta tags are often ignored by modern
websites, which might make them unreliable for some
cases [13].

The web data were extracted using text parsing and
processing techniques in Python. Text extraction and e-
commerce detection was done using a combination of
Python string parsing, Regular Expression (RegEx)
functions, and BeautifulSoup HTML parsing were used.

III. WEB TEXT CLASSIFICATION

Web content classification often involves visiting web
pages to categorize them based on their content. This can
be done manually, but this can be slow and inconsistent. To
address the growing need for efficient classification,
machine learning and automation have emerged as
solutions. Typically, a website's home page suffices for
classification, summarizing the business's purpose and page
content. For other cases, more pages might be necessary.
For example, e-commerce sites may prioritize shop and
product pages, but in most scenarios the home page can
provides sufficient data for classification.

Despite various experiments with different features for
classifying web content, the use of text on web pages
remains a prevalent approach. The main benefit of using
textual data on the web is the ease and speed of extraction,
its reliability, and a wider choice of classification
algorithms that can be used to obtain desired results.

For the software, language detection was utilized to
filter non-English content before processing. The web

230 MIPRO 2024/BIS-BDP

scraper extracts business details, social media profiles,
descriptions, phones, emails, and software information. The
scraper was created to ensure that only two requests are
made per a single website, avoiding server overload.

Home page text, including titles, tables, and paragraphs.
Additionally, web links were extracted for detection of
contact or shop pages. The scraper also extracted necessary
metadata like web page title, description, and keywords
that can be very useful for categorization as they often
describe the main topic of the website and the company and
are used for SEO purposes. In theory, these tags can
provide more valuable information to a classifier text on
the home page, given their purpose to describe the nature of
the website. Having this in mind, a decision was made to
experiment and train the model on web page text, metadata
tags, as well as the text extracted from the tags that
often contains a textual description of the website’s images.

In the Table I, the distribution of categories and the top
10 most words per category are shown.

A. Model Training

For classification, a selection of five algorithms was
chosen based on past studies, the dataset characteristics,
and their varying complexities. The algorithms compared
were support vector machines, multinomial logistic
regression, random forest classifier, a perceptron one layer
neural network model as well as a passive-aggressive
classifier online-learning algorithm similar to the
perceptron [14].

The two text representation techniques, TF-IDF and
word embeddings , were used and their performances were
compared in all tested models. For word representation,
the Gensim library [15], using Word2Vec embeddings, was
employed. Having gained popularity in 2013, word
embeddings revolutionized the field of natural language
processing, offering a word representation that can help
capture some meaning in the corpus [16]. Trained from
scratch with default parameters (vector size 100, window
size 5, minimum count 5), the Skip-Gram algorithm,
predicting context words from a target word, was then
chosen for its effectiveness in representing multiple word
meanings and rare words.

Hyperparameter tuning was done for all models using
RandomizedSearchCV hyperparameter combinations, and
cross-validation. For TF-IDF, the vectorizer and the
classifier were tuned. For Word2Vec, the neural network
embedding model was trained, but only the final classifier
was tuned.

B. Model Results

The experimentation step revealed that linear models
like multinomial logistic regression, perceptron, and
passive-aggressive classifier favored TF-IDF text
representation technique, while non-linear algorithms like
SVC with a non-linear kernel and random forest classifier
performed better with Word2Vec embeddings.

Based on the results of all models, the passive-
aggressive classifier was selected as the final model, with
TF-IDF representation of text. On the given problem, the

default model with TF-IDF achieved a cross-validated
score of 0.688 and 0.697 after hyperparameter tuning.

TABLE I. TOP 10 MOST COMMON WORDS FOR EACH CATEGORY

Category Name Top 10 Most Common Words

Travel 'hotels', 'pm', 'travel', 'flight',

'book', 'hotel', 'holiday', 'new',

'offer', 'resort'

Social Networking

and Messaging

'chat', 'online', 'use', 'free', 'be',

'room', 'new', 'get', 'app', 'service'

Streaming Services 'video', 'stream', 'be', 'new',

'watch', 'get', 'tv', 'apple', 'live',

'use'

Sports 'be', 'league', 'sport', 'cup', 'world',

'new', 'bet', 'news', 'team',

'football'

News 'be', 'news', 'new', 'world', 'pm',

'us', 's', 'say', 'august', 'sep'

Photography 'photography', 'camera', 'image',

'photo', 'use', 'new', 'work', 'be',

'get', 'one'

Law and

Government

'state', 'form', 'close',

'organisation', 'information', 'new',

'government', 'be', 'service', 'act'

Health and Fitness 'cancer', 'health', 'be', 'cells', 'use',

'get', 'body', 'care', 'test', 'help'

Games 'game', 'chess', 'be', 'play', 'new',

'amp', 'download', 'page', 'news',

'one'

E-Commerce 'car', 'insurance', 'n', 'cheapest', 'c',

'tip', 'd', 'shop', 'a', 'gift'

Forums 'be', 'new', 'book', 'post', 'read',

'ago', 'august', 'one', 'use', 'aug'

Food 'recipes', 'recipe', 'be', 'make',

'food', 'yang', 'cook', 'dan', 'indian',

'read'

Education 'science', 'be', 'learn', 'use', 'online',

'university', 'us', 'new', 'students',

'research'

Computers and

Technology

'use', 'be', 'new', 'make', 'c', 'one',

'get', 'file', 'work', 'program'

Business/Corporate 'bank', 'service', 'business', 'us',

'market', 'august', 'home', 'use',

'read', 'financial'

Once the best model was selected from the candidates,
further experimentation involved testing whether adding
metadata content helped the classifier improve its
performance and whether metadata was a reliable feature
should a web page not have any home text available.
Further experiments tested the impact of using metadata
(keywords, description, and alt attribute) on model
performance, exploring their potential use as alternatives
when the scraper fails to extract any text from the home
page. The experiment results revealed multiple things.

MIPRO 2024/BIS-BDP 231

First, the addition of img <alt> tag textual information
worsened the model results, adding a lot of image specific
noise that is irrelevant to general topic of the website. On
the other hand, keywords and description meta tags on their
own proved to be sufficient for model training and
provided similar model performance, but because keyword
tags are no longer a requirement from most modern search
engines - they are often omitted from many modern
websites, making them unreliable for classification as the
only feature source. Combining the best aspects of both, the
final model was trained on the home page text, as well as
the description and keyword tags, which improved model
performance, provided the model more data to train on, and
also offered alternatives for sources of text. For example, if
a web scraper fails to extract or the home page text is too
short or missing - metadata and keywords can provide
additional content. Because metadata are part of the HTML
structure, they load independently of the rest of the page.
Due to this, using it also provides a reliable fallback option
for dynamically generated web content that cannot be
scraped using requests and similar libraries without a
headless browser.

Testing the final model trained on home page text,
keywords and description on unseen data resulted in the
final macro f1 score of 0.737.

C. Observations

The results highlight the effectiveness of simple but
robust text representation techniques such as TF-IDF in
classifying web content, but also the particularities of
working with textual data from the web. Specifically, web
scraped data often lacks relationships between its
components.

Given the challenges of poorly structured HTML and
media-rich websites, good preprocessing is crucial to
remove noise from web scraped data. This makes web text
classification distinct from traditional text classification,
and final corpus consists of many individual words, titles,
and sentences that might be thematically related but do not
often form a meaningful corpus. Because of this,
Word2Vec models, based on co-occurrence patterns,
struggled to capture document-specific information. While
it is the ability to understand context that once made
embedding models so popular, for this problem simpler
bag-of-words models proved more suitable. Additionally,
the size of the dataset could also hinder the power of

Word2Vec, making simpler algorithms better for the task.

IV. PIPELINE AUTOMATION

A. Software Choice

MongoDB [17] was selected as the database for the
software. It is a good choice for building a data pipeline
due to its flexibility, ease of use, and ability to handle
datasets efficiently. The setup does not require extensive
infrastructure and hardware resources, making it optimal
choice for both small and large projects. Its NoSQL
database is beneficial when working with data sets that
evolve or change frequently. It can store data with varying
structures in the same database without major schema
modifications. It stores data in a document format, making
it well-suited for representing datasets with complex or
hierarchical structures. The main reason for choosing
MongoDB instead of relational databases lies in the fact
that the data used in the pipelines and CRM are utilized
through APIs based on JSON. As MongoDB is a document
database which works with semi-structured data without
additional object-relational mapping, mitigating additional
mapping overhead in the system.

Apache Airflow [18] was used as an orchestration tool.
It is an open-source platform revolutionizing automation by
orchestrating complex workflows across distributed system
components. Using Directed Acyclic Graphs (DAGs),
Airflow allows users to define task sequences,
dependencies, and execution conditions, facilitating
automation of processes like data extraction and
transformation [19]. Its user-friendly interface and modular
architecture make it accessible and support step-by-step
automation, while connectors enable integration with
various data sources, databases, APIs, and cloud services.
Companies can efficiently automate tasks, enhance data
processing, and scale their automation efforts gradually
with Airflow.

The software was deployed using containerization,
ensuring consistent and reproducible environments and
improving resource utilization.

B. Architecture

A high-level architecture diagram is shown on the
Figure 1. A CRM system stores original data and is used by
the sales and marketing teams, as well as anyone in the
company managing leads. URLs entering the CRM can be

Figure 1. A high-level architecture diagram of the software.

232 MIPRO 2024/BIS-BDP

added manually or collected through various channels,
including social media marketing, form integration on
company websites, and or embedded forms, or other
sources.

This acts as a starting point for the pipeline and stores a
list of website URLs to be processed. The data also has a
unique identifier field and last scraped date to allow
tracking processed leads, but also for teams working with
the CRM to be able to assess the freshness of the data and
understand how recently the lead was updated.

The CRM automatically updates a last updated column
if a team member manually edits a lead or if any other
changes have been made. The scrape timestamp is kept
separate from this logic to allow for correct tracking of
automated data updates. If a team member updates a
property of a lead – the pipeline will not overwrite the data,
unless instructed.

Each pipeline step is represented as an Airflow task.
Scheduling options allow users to automate pipeline
execution at regular intervals, such as hourly or daily. The
user-friendly interface permits manual task runs before the
scheduled time, if necessary.

Airflow can handle task failures, send notifications, log
errors, or perform specified actions based on requirements.
If a task fails, data are scraped on the next scheduled run. A
retry mechanism was not implemented in the current scope
of the software.

The DAG defines the schedule for the pipeline to run
and four PythonOperator tasks representing each of the
four steps of the pipeline. For this pipeline, a daily run was
scheduled. Since each task fetches data from a source,
processes those data, and pushes them to the next location –
the code is designed to succeed if there are no new items to
process. This also covers cases where no new leads have
been added during the previous day, and all the leads have
already been processed.

To decide whether there are any leads to process, the
data are fetched from the CRM in the first task. A
scrape_date field is used as a reference to ensure that
documents that have been scraped before will not be passed
through the rest of the pipeline, unless marked to do so.
The task will also insert into the CRM only the documents
that do not share the same unique identifier with any
document in that collection, which is set to be scraped
using a property called to_scrape. All other tasks use a
Boolean sync property in each document in a MongoDB
collection stored by the previous task.

The second task accepts incoming leads and sends them
through a web data extraction tool to gather contact details,
phone numbers, social media links, and additional data.
This script also identifies used software, detects e-
commerce platforms, and tags leads based on their business
type - such as whether or not the business is an e-commerce
business. This task uses to_scrape properly to filter out and
process leads that should be scraped. The next task
performs classification by running the machine learning
model on the incoming text. The classification task is only
processing websites whose document has to_categorize
property set to True. Finally, the final task task pushes the
processed and enriched properties to the CRM.

The synchronization allows to save on computational
time that is billed by cloud platforms based on duration and
avoids processing all items every time. The setup also helps
preserve data in the event of a task failure. On the next
successful run, the pipeline detects whether there are any
documents that have not been processed in the previous
run. Should a user need historical data, this can be obtained
by accessing the data in the MongoDB collection.

The file used for software extraction mapping is also
stored in the same folder during the text parsing step and
can be updated to adapt the extraction to business needs -
for example, if detection of different software is needed.

MongoDB stores data as documents that are stored in
three collections - one for the incoming links, another one
with enriched data and scraped output, with all the enriched
data including the full-page text needed for classification.
A third collection stores the final enriched data, that no
longer includes the textual information, but includes the
final predicted category for the website. This data are then
fed to the CRM.

In each collection MongoDB automatically creates an
id field for each document. This acts as a unique internal
identifier and has a significant analytical value as it stores
the hashed timestamp of the object creation. This makes it
possible to use it for future analysis, track metrics and
historical data over time.

Configuration parameters governing the parallelism and
concurrency within the workflow execution were adapted
for the use case. The maximum number of task instances
allowed to run concurrently across all DAGs, allowing only
one task instance can execute at any given time. Maximum
number of active DAG runs that can be executed
simultaneously for each DAG were also set to 1, indicating
that only one instance of a particular DAG can be active at
any given time. The maximum number of active task
instances that can be executed concurrently within a single
DAG were set to 4, allowing up to 4 tasks within the same
DAG to execute concurrently.

These settings help control the degree of parallelism
and resource utilization within Airflow, allowing users to
fine-tune the execution behavior based on their specific
requirements and resource constraints. Allowing only one
DAG to run at a time helped ensure there is no accidental
parallel running of the pipeline which could create clashes
because of simultaneous insertions.

V. LIMITATIONS

The software and machine learning solution have
certain limitations. Firstly, the classifier was trained on a
specific sample of websites with 15 categories. If a website
from a different category enters the pipeline, the model will
try to classify it into one of the defined categories. While
this is needed by some businesses, it might not be suitable
for other needs.

Another constraint of the model is its reliance on an
English corpus, limiting its performance to English-
language websites. Given the diversity of languages on the
web, businesses dealing with local companies may
encounter challenges. To improve data quality and avoid

MIPRO 2024/BIS-BDP 233

running the model on languages other than English, a
language detection library lingua-py [20] was utilized in
the study. Alternative solutions, such as using a translation
API before model input, exist, but they can be costly for
extensive texts and are influenced by translation quality.
For best results, it is recommended to train separate models
for each language or use a multilingual model.

Another limitation of the study is its exclusive focus on
training a model from scratch, without exploring transfer
learning and pre-trained model fine-tuning. While
acknowledging the potential of such methods, this was not
the primary focus of this work.

As the company expands, scalability and performance
become priorities. The web scraper is adjusted with
multithreading for handling more input URLs. Yet, the
Machine Learning model's prediction for each pipeline
item might still slow the process down. To address this,
future scaling can involve using tools like Kubernetes to
distribute the computational workload.

In deployment, managing data storage and size is
crucial. Storing textual data for prediction in a separate
collection may eventually result in significant storage
requirements, potentially reaching hundreds of gigabytes.
Future considerations may involve compression or deletion
of text used solely for classification, as it is unnecessary for
enrichment.

The software can be extended to automatically update
data on a scheduled basis. For instance, implementing a
rule could trigger the pipeline to enrich companies not
updated within a set period, ensuring CRM data stay
current. However, this feature was not implemented in this
study. Furthermore, integration of external APIs and other
data sources into the pipeline can enhance the CRM's
completeness by providing additional company
information.

The pipeline is deployed using containers, making it
ready for fast deployment on any cloud provider or an on-
premises server. However, more extensive testing is
required for high-scale deployments to ensure the software
meets desired quality standards and produces the expected
outcome.

VI. CONCLUSION

Creating a deployable data processing and enrichment
pipeline with an internal web extraction tool, a cloud-based
database, and an open-source scheduling platform can be a
solution for businesses aiming to avoid substantial upfront
investments or lacking large internal technical expertise.
The experiment demonstrates that, despite the limitations, it
is possible to create and deploy a reliable, tailored software
that can be used by companies seeking to leverage their
data for automated data ingestion pipelines with machine
learning, without the need for complex infrastructure.

REFERENCES

[1] “IBM Global AI Adoption Index 2022 New research commissioned

by IBM in partnership with Morning Consult,” 2022. Accessed:

11.01.2024. [Online]. Available:
https://www.ibm.com/downloads/cas/GVAGA3JP

[2] A. Hopkins and S. Booth, “Machine learning practices outside big
tech: how resource constraints challenge responsible development,”
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and

Society, Jul. 2021. Accessed: 10.01.2024. [Online]. doi:
https://doi.org/10.1145/3461702.3462527

[3] P. Gokhale and P. Joshi, “A binary classification approach to lead
identification and qualification,” Communications in computer and

information science, pp. 279–291, Jan. 2018. Accessed: 16.01.2024.
[Online]. doi: https://doi.org/10.1007/978-981-13-1423-0_30

[4] J. Gitlin, “What is lead enrichment? And how can automation

elevate your lead enrichment process?,” Workato, Aug. 20, 2021.
Accessed: 13.01.2024. [Online]. Available:
https://www.workato.com/the-connector/what-is-lead-enrichment/

[5] B. Zhao, “Web scraping,” Encyclopedia of Big Data, pp. 1–3, 2017.
Accessed: 14.01.2024. [Online]. doi: https://doi.org/10.1007/978-
3-319-32001-4_483-1.

[6] E. Uzun, T. Yerlikaya, and O. Kırat, “Comparison of python
libraries used for web data extraction,” in 7th International

Scientific Conference ‘TechSys 2018’ – Engineering, Technologies

and Systems, Technical University of Sofia, Plovdiv. May 17-19,
2018, pp. 108-113.

[7] J. Goerzen, “Web client access,” in Foundations of Python Network

Programming, Apress eBooks, pp. 113–126, Jan. 2004. Accessed:
19.01.2024. [Online]. doi: https://doi.org/10.1007/978-1-4302-
0752-8_6.

[8] G. L. Hajba, “Using Beautiful Soup,” in Website Scraping with

Python, pp. 41–96, 2018. Accessed: 19.01.2014. [Online]. doi:
https://doi.org/10.1007/978-1-4842-3925-4_3

[9] D. Myers, and J. W. McGuffee, “Choosing Scrapy,” Journal of

Computing Sciences in Colleges, vol. 31, pp. 83-89, October 2015.
Accessed: 19.01.2024. [Online]. Available:
https://dl.acm.org/doi/abs/10.5555/2831373.2831387

[10] Apache NutchTM. Accessed: 11.01.2024. [Online]. Available:
https://nutch.apache.org/

[11] lxml - Processing XML and HTML with Python, Accessed:
11.01.2024. [Online]. Available: https://lxml.de/

[12] A. Patil, and B. Pawar, “Automated classification of web sites using
naive bayesian algorithm,” Accessed: 11.01.2024. [Online].
https://www.semanticscholar.org/paper/Automated-Classification-
of-Web-Sites-using-Naive-Patil-
Pawar/d1a069bd1c58473ea0e66d8c4f8a41c5cd69fa34

[13] J. M. Pierre, “On the automated classification of web sites,”
Computer and Information Science, vol. 6, p. 0, Feb. 2001,
Accessed: 20.12.2023. [Online]. Available:
https://arxiv.org/abs/cs/0102002v1

[14] 1. Supervised learning — scikit-learn 1.4.0 documentation.

Accessed: 20.01.2024. [Online]. Available: https://scikit-
learn.org/stable/supervised_learning.html

[15] Gensim: topic modelling for humans. Accessed: 20.01.2024.
[Online]. Available:
https://radimrehurek.com/gensim/auto_examples/

[16] S. Vajjala, B. Majumder, A. Gupta, and H. Surana, Practical
Natural Language Processing. O’Reilly Media, Inc., 2020.

[17] S. Bradshaw, E. Brazi, and K. Chodorow, “MongoDB: The

Definitive Guide, 3rd Edition.” Accessed: 24.12.2023. [Online].
Available: https://www.oreilly.com/library/view/mongodb-the-
definitive/9781491954454/

[18] Apache Airflow. Accessed: Sep. 20, 2023. [Online]. Available:
https://airflow.apache.org/

[19] B. Harenslak and J. de Ruiter, “Data Pipelines With Apache
Airflow,” p. 454, May 2021, Accessed: Sep. 20, 2023. [Online].
Available: https://www.oreilly.com/library/view/data-pipelines-
with/9781617296901/

[20] pemistahl/lingua-py. Accessed: Sep. 25, 2023. [Online]. Available:
https://github.com/pemistahl/lingua-py

234 MIPRO 2024/BIS-BDP

