
Automated SQL Query Evaluations in Massive

Database Courses

Ljiljana Brkić*, Igor Mekterović ** and Melita Fertalj***

*, **, *** University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
Croatia

* ljiljana.brkic@fer.hr

** igor.mekterovic@fer.hr

*** melita.fertalj@fer.hr

Abstract - When assessing submissions in a massive

course, using an Automated Programming Assessment

System (APAS), can benefit both students and teachers.

Students can expect fast and consistent assessment, while

teachers benefit from a reduced workload. Acquiring

proficiency in SQL is one of the core goals of any

introductory or advanced database course. Evaluation of

students’ SQL queries differs from a general-purpose code

evaluation, such as that for C or Java, by requiring a

database on which the query will be evaluated and

parameterized comparisons of the obtained recordsets. The

evaluation using APAS is typically performed in such a way

that the system executes two queries: the student query and

the correct query provided by the course staff and compares

the resulting datasets in terms of accuracy and completeness.

When comparing the obtained datasets, there are a number

of factors to consider, including the importance of tuple

ordering and the relevance of column names. Moreover,

some SQL statements create, alter, or delete database objects

such as tables and indexes, and their correctness cannot be

determined using a predefined output dataset. In order to do

so, every SQL question in APAS must reference some test

database (populated with data). With hundreds of students

enrolled, it becomes technically challenging to execute and

evaluate their queries in real time, especially as these

databases begin to pile up due to courses development and

evolution. In this paper, we comment on a possible solution

and present our approach with APAS that uses multiple

cloned instances of the test database while supporting the

aforementioned specifics of SQL query evaluation.

Keywords - Automated Programming Assessment System,

Dataset Comparison, Multiple Database Instances, SQL

I. INTRODUCTION

Along with database schema modeling, learning to use
the SQL query language correctly and efficiently is one of
the most important goals of an introductory database
course. Although the quality of modeling (at least at a
conceptual level) seems almost impossible to assess in an
automated or at least computer-aided way, the correctness
of SQL statements seems more suitable for automated or
computer-aided assessment. The traditional approach to
assessing student proficiency in database courses has been
hampered by the challenges of grading large volumes of
SQL queries manually. This issue is especially noticeable
in higher education environments, where the increasing
number of students can overwhelm the capacity of
instructors to provide timely and accurate feedback.

To address the challenges associated with teaching and
assessing SQL statements, automated SQL query
evaluation (AQE) tools have emerged. Examples include
eSQL, one of the earliest tools proposed for teaching query
processing concepts but not utilized for evaluation [1].
Another tool is SQL-Tutor, developed at the University of
Canterbury, offering semantic feedback, also not employed
for assessment [2]. AsseSQL, created at the University of
Technology in Sydney and similar tool, named SQLator,
developed by the University of Queensland [3] provide
binary grading for queries submitted by students.
Additionally, SQLify incorporates computer assisted
learning and assessment using a sophisticated automatic
grading system in combination with peer review [4].
Finally, an example of a tool that can serve as a tutoring
tool and in assignment (or even exam) assessment is a tool
named aSQLg [5]. These tools represent efforts to address
the complexities of teaching and assessing SQL in higher
education.

The automation of the grading process through AQE
systems offers advantages for both students and educators.
Students can expect timely and consistent grading
potentially accompanied by feedback that guides students
towards deeper understanding and improved query-writing
skills. By reducing or eliminating the need for manual
grading, AQE systems contribute to improved teacher
efficiency, freeing up time for activities such as refining
course materials, developing richer assignments, or
engaging in more meaningful student interactions [6].

Despite the potential of AQE systems, their
implementation in higher education courses has faced
several challenges. One such challenge involves the
creation of a reliable AQE system that can assess a variety
of SQL queries—from simple to complex—and handle
different data structures and formats. Moreover, to help
students develop their query-writing abilities and to help
them understand the underlying ideas, AQE systems must
not only identify errors but also provide insightful
feedback. that should be accessible regardless of location
and time. Integrating additional data sources, such as
student enrollment records for specific time periods, details
on instructors and staff, and a comprehensive database of
test questions and answers, becomes imperative for
enhancing the functionality of AQE systems.

Many higher education institutions have profited from the

use of Automated Programming Assessment System

(APAS) for evaluating students’ assignments, especially in

MIPRO 2024/BIS-BDP 223

mailto:ljiljana.brkic@fer.hr
mailto:igor.mekterovic@fer.hr
mailto:melita.fertalj@fer.hr

massive courses. However, APASs often lack support for

evaluating SQL queries. Instead of developing the AQE

component as an inseparable, integral part of APAS that is

used for automatic evaluation of different types of

assignments, a possible solution is to develop the AQE tool

independently as a component that can be plugged in and

integrated into the existing APAS. Such an approach was,

for example, used in the integration of the aSQLg tool in

APAS WebCAT [7], as well as in the CMS of the

University of Applied Sciences and Arts in Hannover.

At the University of Zagreb Faculty of Electrical

Engineering and Computing (FER), we have been

developing and actively using an APAS called Edgar for

eight years. Contrary to many other APASs Edgar was

initially developed to automate the assessment of SQL

programming assignments, and this component is

inseparable from the rest of the system. Edgar extends its

support to the evaluation of assignments written in any

programming language executable on a Linux platform (C,

C#, C++, Java, Python, etc). More details can be found on

our previous papers [8][9][10].

The distinction between evaluating procedural code, such

as C or Python, and unprocedural code like SQL queries

lies in their assessment methodologies. In procedural code

evaluation, the process often involves the use of test cases,

predefined inputs that are fed into the program, and the

expected outputs are known in advance. The assessment

boils down to comparing the actual outputs generated by

the code with the expected outputs specified by the test

cases. On the other hand, unprocedural code, like SQL

queries, follows a different assessment paradigm. Instead

of relying on predefined test cases, the evaluation focuses

on comparing datasets. SQL queries retrieve and

manipulate data from databases, and the assessment

involves examining the results produced by these queries.

This comparison is often parametrized, considering factors

such as the order of rows, the significance of column

names, and other contextual considerations.

In this paper, we present the approach that Edgar uses to

define SQL assignments and the corresponding

environment needed to carry out and evaluate submissions

from a course with more than 500 students enrolled each

academic year.

II. APAS SETUP FOR A DATABASE COURSES

SQL query evaluation is unique in that it always

executes in the context of a database. Therefore, to serve

as a repository for these databases, a database server (or

servers) must be included in the architecture of an APAS

that supports the automatic assessment of SQL queries.

A. What type of database is suitable for teaching and

examining courses related to databases?

SQL assignments are created keeping in mind the

underlying database schema that the queries are run against.

In terms of the number and types of objects it contains, the

database needs to correspond with the course content. If it

is used in an introductory course, relations with attributes

of basic data types and defined common constraints

(primary and foreign keys or CHECK constraints) are

sufficient. However, in advanced courses that teach topics

like full text search or geospatial concepts, the schema must

include, for example object-relational data types and

accompanying functions/operations. The issue of selecting

an appropriate Database Management System (DBMS)

inevitably comes up here. Almost all relational DBMSs

will be suitable to host an introductory database. However,

when it comes to advanced concepts, one should carefully

compare the requested with the available functionalities.

Although it may seem that a database of suitable schema,

topic matter and content can easily be found online, our

experience is that this is not the case. Almost all databases

we use in classes were created in the following way. The

process would start by creating a database schema

considering the concepts we teach in the course (e.g.

recursive queries are easier to teach and test if there is at

least one reflexive relationship in the schema). We would

then identify constraints that can be declaratively defined

as well as business rules that need to be respected when

generating data (e.g. a student cannot pass a course before

enrolling it). After that, we would determine how many

tuples each relation should have and finally generate the

tuples programmatically.

The introductory databases course, in our institution, is

attended by fourth-semester undergraduate students

pursuing a bachelor's degree in computer science, while

advanced courses are reserved for those enrolled in the

master's degree program. For the past eight years, we have

been using PostgreSQL RDBMS [11] to teach relational

database concepts in the introductory course. Additionally,

for an extensive period, we have utilized a database named

studAdmin for homework assignments and laboratory

exercises. This database includes data relevant to actual

processes within student and academic administration.

From the very beginning of the course, students are

introduced to the studAdmin database schema. Detailed

explanations are provided that clarify the roles of

individual relations, their mutual connections, and the

meanings of attributes. While derived from our real-world

information system, the schema is adapted for educational

purposes, featuring simplified structures, reduced data

volumes, and anonymized attribute values to maintain data

confidentiality.

A list of the studAdmin database tables is included in

TABLE I, along with metadata detailing the number of

attributes and different attribute data types, as well as the

count of constraints and tuples. Ensuring an adequate

number of tuples within the relations is imperative to

forestall the possibility of predicting query results.

However, it is equally crucial to avoid performance-related

concerns. The size of the datasets requiring comparison and

display in the browser escalates proportionally with the

number of tuples.

In addition to the previously mentioned, we are

currently using nine other databases for teaching and

assessing one introductory and one advanced course.

While some databases are utilized in homework and lab

exercises, others are used in exams, and most frequently,

new database versions are made specifically for exams.

224 MIPRO 2024/BIS-BDP

TABLE I. STUDADMIN DATABASE TABLE METADATA

Table name Num.

of

attrib.

Num. of

diferent

datatypes

Num.

of

constraints

Num.

of

tuples

attendance 4 2 3 11338

classroom 2 2 1 46

county 2 2 1 22

course 4 4 1 66

courseacyear 3 2 2 167

coursegroup 5 3 5 810

enrolledcourse 4 3 3 3579

exam 6 4 4 4325

examterm 4 3 2 324

orgunit 3 2 1 134

student 8 3 4 529

studentgroup 3 2 3 135

teacher 8 4 3 335

town 3 3 2 275

B. How to mitigate performance issues when evaluating

SQL queries in courses with several hundred students

TABLE II presents the data for two courses heavily

reliant on Edgar APAS for instructional purposes and

assessments during the academic year 2022/2023. The

assessments encompass a comprehensive range of

evaluation methods, spanning homework assignments,

laboratory exercises, projects, midterm examinations, final

examinations, and regular assessments. SQL questions

constitute only a fraction of the total number of student

question-exam instances, accounting for 27.32% in the

Databases course and 27.47% in the Advanced Databases

course. This distribution reflects the versatility of Edgar,

which accommodates various question types, including

multi-correct multiple-choice questions, free-format text

responses, and peer assessments. Peer assessment is

particularly valuable for evaluating open-ended

assignments related to Entity-Relationship (ER) modelling

and relational modelling.

TABLE II. STATISTICAL DATA ON COURSE EXAM-INSTANCES

Course name Databases.
Advanced

Databases

Study level Bachelor Master

No of tutorials 13 8

No of exams 41 22

No. of students enroled 567 155

No of exam instances 10607 2707

No of question-exam

instances

109570 14406

No of SQL question-

exam instances

29936 3958

Among all assessments administered via Edgar, the

midterm and final exams impose the most strain on the

computer and software infrastructure due to their

concurrent completion by all students within a short

timeframe (typically 120 minutes). These exams are

conducted under supervised conditions in designated

faculty building classrooms, where access is restricted to

internet locations essential for Edgar's operation and exam

administration via network configuration. This setup

effectively prevents students from collaborating or

exchanging solutions during the exam. In contrast, other

exam types, such as unsupervised assignments completed

at home over a span of seven days or laboratory exercises

involving a smaller number of students completing tasks

simultaneously (up to 170 students), pose less demand on

resources.

To minimize the common issues that arising from

concurrent read/write operations during large-scale exams,

we opted to employ multiple databases for evaluating

student solutions. Currently, there are 10 instances of this

database, so rather than having 567 student queries

evaluated on one database, an equal distribution allows for

around 57 queries to be assessed per database.

Due to the current setup, which consists of 10 instances

of the same database, as opposed to 567 student

submissions being evaluated in the same database, with an

even distribution, approximately 57 student queries are

evaluated on a single database at a time. This setup, with

10 instances of the same database, allows for a more

balanced distribution of workload during assessments.

Moreover, our utilization of 10 databases for the two

mentioned courses, each with 10 instances of distinct

databases, increases the total number of instances to 100,

presenting significant maintenance challenges. To address

this, we implemented a solution wherein we segregated the

relations of each of the 10 unique databases into separate

schemas, consolidating all 10 schemas within a single

database. This approach facilitates the accommodation of

tables with identical names across different schemas, a

beneficial feature considering that many of our databases

feature tables named "student" or "person." Subsequently,

we replicated an additional nine identical databases using

a straightforward SQL command derived from the

template database.
Figure 1 depicts the PostgreSQL database server on the

left, showing 10 instances of databases utilized within

Edgar for evaluating SQL queries (examdb01 through

examdb10). On the right, the schemas within the

examdb04 database are illustrated, comprising five

schemas employed in the Databases course and an

additional five utilized in the Advanced Databases course.

Although the schema names in the illustration are generic

and do not align with actual names, our operational system

indeed encompasses 10 schemas, one of which is

studAdmin, containing the database described earlier in

this chapter, where the tables from TABLE 1 were created.

The SQL questions within Edgar requires the use of

objects, specifically tables, from a single schema which

now consolidates all tables previously distributed across

separate databases.

MIPRO 2024/BIS-BDP 225

Figure 1. Database instances used to validate SQL queries on database

courses

We don't find this limitation to be an issue because, in

the past, we didn't use tables from distinct databases in the

same query. We don't even require these capabilities on

advanced courses so far.

Consequently, each question in Edgar mandates the

definition of a schema within the execution environment

of the SQL query. For queries involving SELECT,

INSERT, UPDATE, or DELETE statements, the tables

referenced belong to the specified schema, while CREATE

[TABLE/INDEX/FUNCTION/...] statements generate

objects within the schema associated with the question.

PostgreSQL, akin to certain other DBMSs, employs the

concept of a search path, dictating the order in which

schemas are consulted during query evaluation. Prior to

query execution, Edgar configures the SEARCH_PATH to

prioritize the schema relevant to the question, followed by

the public schema housing common objects. A typical

statement defining the SEARCH_PATH for SQL queries

utilizing studAdmin database tables looks like:

SET SEARCH_PATH TO studAdmin, public;

This configuration avoids the need for qualified names

for tables (include the schema name as a prefix) within the

SQL query solution, which are tedious to construct.

III. SQL QUESTION DEFINITION AND EVALUATION IN

EDGAR

In Edgar, each programming question, whether it

pertains to SQL, Java, C, or any other language, is

structured with three code snippets: the required source

code (called SQL Answer in SQL questions), an optional

prefix, and an optional suffix. These components are

combined to form the complete program. When

completing the assignment, students are solely responsible

for providing the required source code. However, the

question author can add the optional prefix and suffix,

which are incorporated before (prefix) and after (suffix)

the required source code, respectively. Despite being part

of the overall solution, these optional segments are always

authored by the question creator.

Sometimes, when it is acceptable, optional components

are even given in the assignment text and can be used when

solving it. This approach provides flexibility for teachers

to creatively design scenarios and support diverse

programming assignments. We have addressed this in

more detail in our earlier work [10]. For instance, in an

Introduction to Programming course, assignment may

involve the evaluation of function that students should

write for a provided prototype and prescribed

functionality. In some cases, students are not required to

write the main program themselves. Instead, teachers

compose the main program and include it as a suffix

component of the solution, which is then provided to

students within the assignment text.

In SQL questions, the implementation of the prefix-

source-suffix scheme makes it easier to evaluate record

changes, deletions, and even Data Manipulation Language

(DML) expressions like CREATE INDEX and ALTER

TABLE in addition to SELECT statements. In the code's

suffix section, a query to the system catalogue is used to

do this.

Consider the exam from the Figure 2 which consists of

one SQL assignment that expects a single SELECT

statement in response. The question refers to the studAdmin

database and students know this in advance. By pressing

the Run button, the student initiates the execution of his

own SQL code. The program determines the database in

which the query will be executed among the 10 available

databases, considering an even distribution of the load

across all databases. The configuration of the question

includes information about the schema to which the query

pertains.

Figure 2. An exam with a single SQL question in Egar that expects a

single SELECT statement as a solution.

On the lower part of the screen, syntactical errors in the

query are visible, enabling the student to correct the error

based on feedback.

226 MIPRO 2024/BIS-BDP

Figure 3 displays the screen for question definition used

by the course teacher. The correct solution is provided

under the SQL Answer section, while (this time) the SQL

prefix, SQL suffix, and Presentation query parts remain

empty.

TABLE III shows the complete code constructed based

on SQL prefix - SQL Answer - SQL suffix and Presentation

query parts. The SQL Answer section provided by both the

teacher and the student (highlighted in light blue) is inserted

between the prefix and suffix sections (highlighted in

yellow), which are left empty in this case. When the

complete SQL code is assembled for the teacher and the

student, record sets presenting the correct solution and the

student's solution are acquired and subsequently compared

using options visible on Figure 3 above the SQL Answer

label. In this particular case, the student's solution ended

with an error, so it will not produce a recordset, and there

will be no comparison of the recordsets.

In Edgar, the SQL-runner operates within a transaction

that is consistently rolled back, effectively creating a

sandbox environment. This approach does not limit the

execution solely to read-only SELECT statements. Rather,

it allows for the execution of various DML statements such

as INSERT, DELETE, UPDATE, as well as DDL

statements like ALTER TABLE, CREATE TABLE,

INDEX, and so forth. The SQL-runner executes these

statements, retrieves the necessary datasets, and

subsequently rolls back the transaction.

Figure 3. Definition of the question from the Figure 2 by the teacher

TABLE III. VALUATING CORRECTNESS FOR THE EXAMPLE ON

FIGURE 2 AND FIGURE 3

 Assembled code to execute:

T
ea

ch
er

BEGIN WORK;

SET SEARCH_PATH TO studAdmin, public;

SELECT academicyear, courseid,

 COUNT(DISTINCT teacherid) as

 totalTeachersParticipated

 FROM coursegroup

 NATURAL JOIN course

 WHERE academicyear = 2022

 AND coursename='Databases'

GROUP BY academicyear, courseid;

ROLLBACK WORK;

S
tu

d
en

t

BEGIN WORK;

SET SEARCH_PATH TO studAdmin, public;

SELECT academicyear, courseid,

 COUNT(DISTINCT teacherid)

 FROM coursegroup, course

 WHERE coursegroup.courseID =

course.courseID

 AND coursename='Databases'

 AND academicyear = 2022

GROUP BY academicyear, courseid;

ROLLBACK WORK;

It is important to emphasize that, unlike code questions

or multiple-choice questions, the correctness of SQL

questions is binary - 0% or 100%. Teachers can

subsequently correct the points if necessary, and we

regularly do this for submissions graded with 0%.

Figure 4 shows the definition of a question whose answer

is to create a constraint in the database. In this question, in

addition to the SQL Answer, which is expected from the

student in that or a similar form, the SQL prefix and the

SQL suffix part were also used.

TABLE IV outlines the complete SQL code that is

evaluated for the teacher's and student's solution. Since the

primary and foreign key constraints have already been

created for the tables in the studAdmin database, before

the SQL code written under SQL Answer starts creating

them, they should be dropped first (statements under SQL

prefix). After the constraints are created (commands under

SQL Answer), the SELECT command (SQL suffix) is

used to check whether the constraints were created

correctly. Edgar_keys is a view created in the databases

examdb01-examdb10 in the schema public, which obtains

all primary and foreign key constraints. SQL prefix and

SQL suffix part are inserted into the complete solution

before (prefix) and after (suffix) the teacher's correct

answer and the student's answer. The only variable part is

the SQL code shown in the table in light blue.

The student will be presented with a recordSet returned

with the SQL suffix statement.

MIPRO 2024/BIS-BDP 227

Figure 4. Definition of a question whose answer is to create a

constraint in the database

I. CONCLUSION

In this paper, we discussed the use of the Edgar APAS for

teaching and assessing SQL queries within database

courses. Using several instances of the exam database with

multiple schemas is one of the strategies we identified to

help us handle system component administration issues

and increase APAS performance while reviewing SQL

questions on mass examinations.

Additionally, we described how to define and evaluate

SQL queries in Edgar, emphasizing the usage of

programmable templates. We showed how to run SQL

queries in a safe sandbox setting, which made it possible

to assess a variety of SQL statements.

Overall, this paper provides insight into the challenges and

complications of putting into practice an APAS designed

especially for teaching and evaluating SQL queries in

database courses.

TABLE IV. EVALUATING CORRECTNESS FOR THE EXAMPLE ON

FIGURE IV

 Assembled code to execute:

T
ea

ch
er

BEGIN WORK;

SET SEARCH_PATH TO studAdmin, public;

SQL prefix

ALTER TABLE studentgroup

ADD constraint pkGroup

PRIMARY KEY(academicyear,

studentgroupid);

ALTER TABLE coursegroup

ADD constraint

fkCourseGroupStudentGroup FOREIGN key

(academicyear, studentgroupid)

REFERENCES studentgroup(academicyear,

studentgroupid);

SQL suffix:

ROLLBACK WORK;

S
tu

d
en

t

BEGIN WORK;

SET SEARCH_PATH TO studAdmin, public;

SQL prefix

Student’s solution

SQL suffix:

ROLLBACK WORK;

REFERENCES

[1] R. Kearns, S. Shead, and A. Fekete, “A teaching system for

SQL,” ACM Int. Conf. Proceeding Ser., vol. Part F1293, pp.
224–231, 1997, doi: 10.1145/299359.299391.

[2] A. Mitrovic, “Learning SQL with a computerized tutor,”

Poceedings Conf. Integr. Technol. into Comput. Sci. Educ.
ITiCSE, no. March 1998, pp. 307–311, 1998, doi:

10.1145/273133.274318.

[3] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin, “SQLator - An
online SQL learning workbench,” SIGCSE Bull. (Association

Comput. Mach. Spec. Interes. Gr. Comput. Sci. Educ., vol. 36,

no. 3, pp. 223–227, 2004, doi: 10.1145/1026487.1008055.
[4] S. Dekeyser, M. de Raadt, and T. Y. Lee, “Computer assisted

assessment of sql query skills,” Conf. Res. Pract. Inf. Technol.

Ser., vol. 63, pp. 53–62, 2007.
[5] C. Kleiner, C. Tebbe, and F. Heine, “Automated grading and

tutoring of SQL statements to improve student learning,” ACM
Int. Conf. Proceeding Ser., pp. 161–168, 2013, doi:

10.1145/2526968.2526986.

[6] J. Heil and D. Ifenthaler, “Online Assessment in Higher
Education: A Systematic Review,” Online Learn. J., vol. 27,

no. 1, pp. 187–218, 2023, doi: 10.24059/olj.v27i1.3398.

[7] “Web-CAT - Web-CAT.” https://web-cat.org/projects/Web-
CAT/ (accessed Feb. 05, 2024).

[8] L. Brkić, I. Mekterović, M. Fertalj, and D. Mekterović, “Peer

assessment methodology of open-ended assignments: Insights
from a two-year case study within a university course using

novel open source system,” Comput. Educ., vol. 213, p.

105001, May 2024, doi: 10.1016/J.COMPEDU.2024.105001.
[9] I. Mekterovic, L. Brkic, and M. Horvat, “Scaling Automated

Programming Assessment Systems,” Electron. 2023, Vol. 12,

Page 942, vol. 12, no. 4, p. 942, Feb. 2023, doi:
10.3390/ELECTRONICS12040942.

[10] I. Mekterovic, L. Brkic, B. Milasinovic, and M. Baranovic,

“Building a comprehensive automated programming
assessment system,” IEEE Access, vol. 8, pp. 81154–81172,

2020, doi: 10.1109/ACCESS.2020.2990980.

[11] “PostgreSQL: The world’s most advanced open source
database.” https://www.postgresql.org/ (accessed Feb. 07,

2024).

228 MIPRO 2024/BIS-BDP

