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Abstract - Diabetes is a widespread disease, suffered by 

millions, including children. Treatment of diabetes type 1 and 

sometimes even type 2, entails multiple blood glucose checks 

and insulin injections per day, and can thus be extremely 

exhausting, especially for very young children.  Open-loop 

systems of insulin delivery, insulin pumps, used today 

commercially, require human interaction which can lead to 

low blood glucose control due to human mistakes.  Fully 

automated closed-loop systems of artificial pancreas, as one-

hormone as well as dual-hormone systems, are being 

developed. This paper is the literature survey of the latest 

research on the automated closed-loop artificial pancreas. 

The objective of this paper is to explore the development of 

devices and techniques to facilitate the daily life of diabetic 

patients with emphasis on the latest research on the topic. 

From so-called pens to open-loop systems of insulin pumps, 

closed-loop systems with user interaction - hybrid closed-

loop, to the latest fully automatized closed-loop – artificial 

pancreas. In total 300 articles are reviewed from which 150 

articles are retained for the literature survey and 50 are 

analysed in this literature review. 

Keywords – artificial pancreas, bionic pancreas, close-loop, 

prediction-based algorithm, detection-based algorithm 

 

I. INTRODUCTION 

Diabetes is one of the most prevalent diseases of today. 

Even children as young as 2 months can suffer from it. 

According to the WHO [1] more than 422 million people suffer 

from diabetes, of which 9 million suffer from type 1. In type 1 

diabetes (T1D), a patient usually suffers from congenital 

flaws that prevent them from producing hormones that 

regulate blood glucose. Type 2 diabetes patients (T2D) 

produce those hormones, but their function in the body is 

diminished. 

Currently, patients with diabetes are treated with 

either: 1. multiple daily blood glucose measurements and 

insulin injections, which can be very unpleasant, 

especially for young children (as well as for their parents 

and caregivers), or 2. continuous subcutaneous blood 

glucose measurements and insulin infusion delivered via 

an insulin pump. Various open-loop insulin pumps 

available in the market are programmable to deliver the 

required amount of insulin. However, all of them require 

user intervention. A fully automated closed-loop insulin 

infusion system that can deliver appropriate amounts of 

insulin to patients without any manual interference is being 

developed. Dual-hormone systems, insulin with glucagon, 

or pramlintide are also being developed. The closed-loop 

system contains three main components: continuous 

glucose monitoring (CGM), an intelligent controller, and 

an insulin pump. 

In the last 20 years, several prediction-based and 

detection-based algorithms for insulin 

attenuation/suspension, as well as dual-hormone systems, 

have been proposed in the literature, with the aim of 

preventing or mitigating hyperglycaemia (high blood 

glucose level) and hypoglycaemia (low blood glucose 

level). 

However, for artificial pancreas construction, there is a 

basic terminology to be comprehended: 

● Basal insulin stabilizes blood glucose levels when 

a patient is in a fasting state, especially during periods of 

sleep. Patients that use conventional methods – needles or 

pens to inject insulin into the body, usually take basal 

insulin before sleep. Patients that use insulin pumps, either 

open-loop or hybrid close-loop, are administered basal 

insulin automatically, in small doses throughout the day. 

● Bolus is a dose of insulin taken to handle a rise in 

blood glucose that happens after eating, especially peroral 

carbohydrate intake.  

● Insulin on board (IOB) is defined as the amount 

of administered insulin that is still active in the body. 

● Insulin pump is a system that consists of an 

insulin tank, pump controller, and in the latest systems that 

are on the market – a communications system with CGM 

via Bluetooth. 

● CGM is the system that measures the level of 

blood glucose, usually in 5 minutes periods, and in some 

latest commercial systems it sends information to the 

pump controller via Bluetooth. In older systems, that are 

still in use, blood glucose level monitoring is done via NFC 

(near-field communication) and mobile phone 

applications. 

● Open-loop systems consist of CGM and insulin 

pumps that are not interconnected, there is no 

communication between the two of them and the pump is 

completely user-controlled. 

● The closed-loop system contains three main 

components: CGM, insulin pump, and intelligent 

controller that regulate insulin delivery. 
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Table I. Blood glucose target values 

                                 

  

healthy  diabetic  

fasting  

(before a meal, 

during the night, 

…)  

4–6 

mmol/L 

70–110 

mg/dL 

4–7 

mmol/L 

70–130 

mg/dL 

2h post-

prandial  

(after meal)  

<7,8 

mmol/L 

< 140 

mg/dL 

<10 

mmol/L 

<180 

mg/dL 

 

Information about the crucial parameter for close-loop 

artificial/bionic pancreas construction, target blood 

glucose levels for diabetic persons, compared with levels 

of a healthy non-diabetic person, is shown in table I. 

Blood glucose levels for a diabetic patient: 

4 – 7 mmol/L (70 – 130 mg/dL):  euglycemia (normal 

level of blood glucose) 

3 – 5 mmol/L (55 – 90 mg/dL):  hypoglycaemia (low 

level of blood glucose) 

< 2 mmol/L (40 mg/dL): life-threatening 

hypoglycaemia 

7 – 15 mmol/L (130 – 270 mg/dL):  hyperglycaemia 

(high level of  blood glucose) 

> 16 mmol/L (300 mg/dL):  life-

threatening hyperglycaemia 

 

II. TECHNICAL BACKGROUND 

Open-loop system of insulin delivery, insulin pumps 

used today commercially, require human interaction which 

can lead to low blood glucose control due to human 

mistakes. 

Both single-hormone systems (delivering insulin only) 

and dual-hormone systems (delivering insulin and 

glucagon or another hormone) are being pursued 

clinically. The addition of glucagon has the potential to 

further alleviate the risk of hypoglycaemia but increases 

the system’s complexity with separate drug reservoirs, 

infusion sets, and algorithms. From a patient perspective, 

the ideal closed-loop system requires minimal user 

interaction, device burden, and inconvenience while 

achieving optimal glucose control. 

Fully closed-loop systems that detect and 

automatically dose insulin for meals have been attempted, 

but glucose control is compromised because of delays in 

the absorption of subcutaneous rapid-acting insulin 

analogue. Therefore, most closed-loop systems adopt a 

hybrid approach, requiring manual administration of 

insulin boluses for meals. 

 Closed-loop control overnight reduced time in 

hypoglycaemia and increased time in the target glucose 

range. 

The efficacy and safety of closed-loop glucose control 

in the outpatient setting have been demonstrated in 

multiple studies using different closed-loop prototypes and 

in meta-analysis. 

 

III. LITERATURE REVIEW 

During the research, it has been found that diabetes and 

closed-loop artificial/bionic pancreas topic is very popular 

in the last 20 years, and there are many scientific papers on 

different research aspects. From about 300 papers 

retrieved from different scientific sites, such as Research 

Gate, Google Scholar, IEEE, Journal of Diabetes Science 

and Technology, and PubMed/Medline, around 150 met 

the inclusion criteria, technical aspect of closed-loop, and 

50 of them are included in this literature review. A lot of 

papers explore the medical aspects and clinical research of 

available systems, so they are excluded from further 

review. 

The function of basal insulin is successfully 

incorporated into artificial pancreas systems that are 

already in use, so papers that treat basal insulin control are 

excluded. CGM/pump communication papers are 

excluded, due to CGM and its communication with the 

pump are also successfully incorporated into commercially 

available systems. 

Papers relating to mobile phone applications for 

monitoring and blood glucose regulation are also 

excluded, since research aim isn’t mobile application. 

Bolus insulin is the aspect that is hardest to automate, 

so the focus was placed on works that relate to algorithms 

to incorporate different factors that influence blood 

glucose dynamics. The majority of the technical papers 

treat the prediction of blood glucose dynamics. 

Blood glucose is unpredictable. Each person is 

different and special, and there are a huge number of 

factors that influence blood glucose levels. Type of meal 

(number of carbohydrates, but also proteins and fats in a 

meal), physical activity (level and type), stress, hormonal 

fluctuation (during puberty, menstrual cycle, pregnancy, 

childbirth, menopause…), illness, high body temperature, 

sleep deprivation …. Everything mentioned above should 

be incorporated into artificial/bionic pancreas that 

emulates functions of the healthy human pancreas. But, 

human organisms, and every and each organ, are very 

complex systems that are almost impossible to emulate by 

mechanical means. 

Children are the most delicate and unpredictable of all 

patients. Their bodies demand higher doses of insulin, 

which leads to a greater risk of low blood glucose hours 

after meals. So young children and their caregivers face 

many different obstacles. The majority of the research is 

for adult patients, and just a small number of research are 

led for the youngest diabetes patients. Papers [5], [9], [11], 

[14], [15], [27], [29] from the reference list address the use 

of the pump in the youngest population and their effects. 

Teenagers with diabetes, on the other hand, provide 

another subset of challenges. Papers [10], [11], [15], [27], 
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[29] also includes teenagers and adolescent in their 

research. 

All other papers consider only adult diabetic patients. 

Only one paper [2] presents research on pregnant 

diabetes patients’ blood glucose control. 

Exercise has proven to be a particularly difficult-to-

control metabolic disturbance. Exercise increases muscle 

demand for glucose and can increase insulin sensitivity for 

hours later. Given the long-time delays of insulin action, 

stopping insulin delivery for a rapidly falling glucose is 

unlikely to prevent hypoglycaemia. Much work has been 

done to detect exercise through the use of heart rate alone, 

but it alone isn’t enough. Additional signals that detect 

physical activity faster than CGM alone, may improve 

blood glucose control and reduce exercise-related 

hypoglycaemia. In papers [16], [18], [25], the research was 

based on the inclusion of the detection of physical activity 

into the algorithm to perform corrections of insulin dosage. 

One challenge of managing diabetes without 

significant hypoglycaemia relates to the wide fluctuation 

in insulin requirements to maintain euglycemia, between 

people and for the same person from day to day and in 

different situations. A second challenge is the time delay 

between subcutaneous insulin injection and insulin action 

to lower blood glucose levels, which can extend to more 

than an hour. As a result, it is exceedingly difficult for an 

individual to accurately predict how much insulin is 

needed in any particular situation, often resulting in 

hypoglycaemia or hyperglycaemia. 

The majority of the research uses prediction-based 

algorithms. The most used are MPC (Model Predictive 

Control) and PID (Proportional-Integral-Derivative). 

Papers [2], [6], [7], [9], [17], [27], [31], [32] research 

closed-loop systems using the MPC algorithm, and papers 

[8], [17], [21], [24], [27] PID. Some of the papers use 

Machine Learning, Deep Learning, and Artificial Neural 

Networks [14], [15], [16], [18], [26], [32], [33], [37], [39] 

for decisions on insulin administrated. 

Around 80% of the papers are about one-hormone 

pumps, while some, like[5], [10], [11], [13], [34], [40] test 

bi-hormonal cases, two separate pumps, and controllers. 

Also, the majority of the research is on hybrid close-loop 

systems that include user intervention in some way [2], [3], 

[7], [9], [16], [18], [19]. Almost all reviewed papers are 

about T1D, and just a few include T2D patients [22], [25], 

[35]. The reason is that T1D patients’ bodies don't produce 

insulin (and some other hormones), so they are condemned 

to multiple injections day and night, unlike T2D patients 

whose body produces insulin in a certain amount and the 

need for a pump isn’t that substantial. Even though, some 

scientists are considering constructing insulin pumps for 

T2D [22], [35].  

All testing that is done in-silco is done using the 

UVa/Padova diabetes simulator. 

As previously mentioned, the biggest challenge is 

blood glucose regulation around mealtime due to slow 

digestion and absorption of food (conversion to blood 

glucose), and on the other hand slow effect of injected 

insulin. In a healthy human body, a healthy pancreas starts 

insulin production and secretion at the moment a person 

starts a meal. In everyday life, diabetic patients, both T1D 

and T2D that use insulin for blood glucose regulation, 

calculate the number of carbohydrates to be eaten, 

calculate the responding bolus insulin dose, and inject it, 

via the conventional method – pens, or enter the number 

of insulin units into pump controller. How to detect or 

predict meals, how to detect or estimate the size of meals, 

number of carbohydrates consumed, and similar questions 

are discussed in papers [2], [3], [4], [6], [7], [16], [28], 

[30], [31], [32], [38]. 

In further literature review, the aim was to find 

researches that use artificial neural networks (ANN) for 

bolus insulin regulation, or for detecting some irregular 

events that affect blood glucose level like stress, physical 

activity, illness, life phases with hormonal changes, etc. 

There is a small number of papers that treat the topic of 

bolus and/or meal detection/prediction using ANN [14], 

[15], [16] and [37]. Similar is for physical activity using 

ANN [16], [18]. No research is done in a case of some 

irregular events like stress, illness, or hormonal changes 

during pregnancy, puberty, etc. 

A Convolutional Neural Network (CNN) and a Long 

Short-Term Memory Recurrent Neural Network (LSTM 

RNN) are used in research [14] for blood glucose 

forecasting of 10 virtual paediatric patients. ReLu 

activation function was used for both training models. The 

models were implemented and trained on Google Colab 

using libraries Keras and TensorFlow. Both models take as 

input a 3×30 matrix of values, corresponding to the last 30 

min of the 3 feature values. Dynamic range quantization, 

in .tflite format, is used for performing regression tasks on 

Rasperry, and the full integer quantization, uint8, for 

DevBoard. Results of the research showed that LSTM 

model achieves the best numeric and clinical accuracy 

when tested in the .tflite format, whereas the CNN achieves 

the best clinical accuracy in uint8. The models achieved 

numerical accuracy comparable to those reported in the 

literature for adult patients. 

In their research [15] authors use offline 

Reinforcement Learning (RL) algorithms: batch 

constrained deep Q-learning (BCQ), conservative Q-

learning (CQL) and twin delayed deep deterministic policy 

gradient with behavioural cloning (TD3-BC) for nine 

virtual diabetes patients, with UVa/Padova simulator, and 

compares results with PID controller’s. Performance was 

evaluated by monitoring blood glucose levels over a 

simulated 10-day test period and aggregating the results 

over three test seeds per training seed. Offline RL 

algorithms had better results in time in the healthy glucose 

range (6.4±1.1)%, meal estimation, even in case of 

irregular meal patterns. The work showed that offline RL 

conduce more effective and safer insulin dosing from 
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smaller samples of data comparing with the current 

standard of glucose control algorithms. 

In [16] authors described a deep reinforcement 

learning algorithm they developed using a T1DM dataset, 

data from wearable devices, with aim to automate insulin 

dosing. They built patient-specific computational models 

using systems biology informed neural networks (SBINN) 
with the Roy-Parker model, to mimic the glucose-insulin 

dynamics by simultaneously considering patient-specific 

carbohydrate intake and physical exercise intensity.  

Dataset that is used contained 8-week continuous glucose 

monitoring, insulin, physiological sensor, and self-

reported life-event data for 12 patients. According to the 

authors conclusion model not only correctly predicts the 

hidden states that cannot be measured with current 

diabetes technology, but also accurately infers patient-

specific parameters, different daily routine of physical 

activities and insulin injection, governing the patient-

specific Roy Parker model by reconstructing all states of 

interest. 

The study [18] investigates the classification of 

different types of acute psychological stress (APS) and 

physical activity (PA) via physiological variables 

measured by a wristband device. Random convolutional 

kernel transformation is used to extract a large number of 

feature maps from the bio signals measured by a wristband 

device (blood volume pulse, galvanic skin response, skin 

temperature, and 3D accelerometer signals). Three 

different feature selection techniques (principal 

component analysis, partial least squares–discriminant 

analysis (PLS-DA), and sequential forward selection) as 

well as four approaches for addressing imbalanced sizes of 

classes (up sampling, down sampling, adaptive synthetic 

sampling (ADASYN), and weighted training) are 

evaluated for maximizing detection and classification 

accuracy. A LSTM RNN model  is trained to estimate PA 

(sedentary state, treadmill run, stationary bike) and APS 

(non-stress, emotional anxiety stress, mental stress) from 

wristband signals. The balanced accuracy scores for 

various combinations of data balancing and feature 

selection techniques range between 96.82% and 99.99%. 

The combination of PLS–DA for feature selection and 

ADASYN for data balancing provide the best overall 

performance.  

A LSTM NN is used in [37] for glucose forecasting, to 

predict blood glucose levels up to 60 minutes in advance, 

using continuous glucose measurements and insulin data 

collected from 175 people with T1D. Authors introduce 

the glucose variability impact index (GVII) and the 

glucose prediction consistency index (GPCI) to assess the 

accuracy of prediction algorithms. The inputs to the model 

are glucose prediction up to 60 minutes, and glucose and 

insulin on board (IOB) 3 hours values. Activation function 

used is ReLu. During the network training phase, the 

mean-square-error (MSE) loss function was minimized 

and multiple passes over the entire training set were done. 

Weights were updated using batches of 64 training 

sequences. The model was compared with several naïve 

approaches for estimating glucose and with alternative 

machine learning algorithms. The LSTM had highest 

accuracy and best GVII and GPCI. 

Research of a machine learning model developed for 

probabilistic prediction of hypoglycaemia is explained in 

the paper [39]. The model is developed for 30- and 60-

minute time horizons, based on CGM datasets and 

obtained from 112 patients over a range of 90 days. The 

model predicted hypoglycaemia with >91% sensitivity 

while maintaining a specificity of >90%. Two approaches 

were considered for prediction: Logistic Regression (LR) 

and Random Forests (RF). Classifiers based on Decision 

Trees, Gradient Boosting, and Support Vector Machines 

were developed. From the aforementioned research, it is 

concluded that 30 minutes time horizon is sufficient for the 

results.   

 

IV. CONCLUSION 

Bolus insulin isn’t completely regulated so far. A very 

limited amount of research has been done on children, and 

adolescents, as well as the effects of pregnancy and 

exercise. An even smaller amount of research exists for 

dual hormone pumps specifically. Recent researches on 

ML, DL and ANN algorithms show better results in blood 

glucose regulation, more secure, accurate and precise, than 

PID and MPC algorithms already used in commercially 

available systems. Further research should be directed to 

bolus insulin regulation, and dual hormone pumps, and 

specifically include children and adolescents in their 

sample. The system in use should work efficiently even in 

periods of frequent blood glucose variations due to 

hormonal changes, like growing up, puberty, pregnancy, 

breastfeeding, virus/bacterial diseases, stress, etc. The 

system should also adapt to varying carbohydrate intake. 

It is of uttermost importance to get a model with high 

degrees of both precision and accuracy. 
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