
The Comparison of Different Feature Extraction
Methods in Musical Instrument Classification

N. Rodin∗, D. Pinčić∗, K. Lenac∗, D. Sušanj∗
∗ University of Rijeka, Faculty of Engineering, Rijeka, Croatia

dsusanj@riteh.hr

Abstract—In this paper, we analyze four different methods
for audio feature extraction and compare their efficiency in
the context of musical instrument classification. We study
spectrograms, Mel spectrograms, Linear-Frequency Cepstral
Coefficients (LFCCs) and Mel-Frequency Cepstral Coeffi-
cients (MFCCs) in combination with three different Deep
Learning architectures: VGG-16, ResNet-34 and a custom
CNN. We investigate the behavior of our models in two differ-
ent classification scenarios to determine a possible correlation
between the number of classes and the efficiency of each
method. For this purpose, we took samples from the London
Philharmonic Orchestra dataset and ran the experiment for
three and fifteen classes of musical instruments belonging to
three different instrument families: Woodwinds, Strings and
Brass.

Keywords—Musical Instrument Classification, CNN

I. INTRODUCTION

Music has been a fundamental part of human identity
and culture since prehistoric times. Over thousands of
years, musical instruments have evolved to a high level
of diversity and intricacy, aiming to create unique sounds
and trigger specific emotional responses in listeners. From
an analytic point of view, the skill of distinguishing be-
tween different instruments playing together in a complex
musical piece carries an important role. Inspired by this
fascinating task, our paper explores different ways of
capturing audio features of classical instruments and cate-
gorizing them into correct instrument classes. A carefully
selected preprocessing method combined with a suitable
Deep Learning architecture establishes a foundation for
more complex tasks such as music recommendation sys-
tems, melody extraction, and music information retrieval.
Having that in mind, the goal of this study is to provide
an overview of several preprocessing methods and their
performance in different classification environments.

In the past years, audio feature extraction and signal pro-
cessing have become more popular and more researched
topics. There have been several studies that tried to com-
pare the efficiency of the existing audio preprocessing
methods. J. D. Deng et al. [1] analyzed three types of
audio features used in musical instrument classification,
including perception-based features, MPEG-7 timbral fea-
tures, and MFCC features. They were compared using dif-
ferent machine learning techniques. In the end, the results
showed that MFCC features gave the best classification

This research was supported by University of Rijeka, Rijeka, Croatia
under the grant uniri-tehnic-18-295.

performance. In addition, A. Eronen [2] compared Linear
Prediction Cepstral Coefficients (LPCCs) with MFCCs
and concluded that MFCCs gave the best accuracy results
when dealing with instrument family classification.

Recently, many audio classification researchers have
been using MFCCs as their feature extraction method of
choice. This is not only common in studies dealing with
musical instrument classification [3], [4], but also fields
like speech recognition [5], heart sound classification [6],
and animal sound classification [7]. S. K. Mahanta et al.
[8] combined MFCCs with an artificial neural network
and got 97% accuracy on the full London Philharmonic
Orchestra dataset. Similar experiment was conducted by
S. Prabavathy et al. [9] when they used MFCCs in
combination with a convolutional neural network to reach
the accuracy of 97.5%. Even though MFCCs seem to
be more popular, some works such as [10] still opt
for Mel spectrograms. Interestingly, R. Profeta and G.
Schuller [11] managed to design a new CNN autoencoder-
based filter bank that outperformed spectrograms and Mel
spectrograms.

Unlike other works, our study encompasses the analysis
of four common feature extraction methods that are based
on the short-time Fourier transform. Another novelty is
the use of multiple CNN architectures and different-sized
datasets for comparison.

II. DATASET

For this study, we decided to use a slightly modified
version of the London Philharmonic Orchestra dataset
[12]. The original dataset consists of 20 instrument classes,
including standard orchestral instruments, guitar, man-
dolin, banjo, saxophone, and various percussion instru-
ments. Each class contains a number of high-quality audio
samples, ranging from 74 (banjo) up to 1502 samples
(violin).

Considering the significant imbalance of data samples
per class, we decided to focus on standard orchestral
instruments, thus eliminating the classes with insufficient
number of samples. This resulted in a dataset of 15 classes,
containing only traditional instruments found in classical
orchestral music, with a total of 12 541 audio samples.
The distribution of samples in the modified dataset can be
observed in Fig. 1.

Seeing that all of the examined instruments belong to
three instrument families (Woodwinds, Strings and Brass),

1318 MIPRO 2023/AIS



Fig. 1: Distribution of samples in the modified dataset

we decided to create an additional experiment with a
reduced dataset containing only three classes of choice,
each representing one instrument family. For this purpose,
we opted for cello, flute, and trombone, as they appeared
to have a reasonably balanced number of samples. The
total number of samples in the smaller dataset was 2 598.

The audio samples consisted of single tones and simple
phrases played on different musical notes ranging from
A1 to G7. In addition, samples were played with a wide
range of techniques and dynamics.

The duration of audio files varied from less than a
second to over a minute, which meant we had to decide
upon a fixed length and perform trimming or padding,
depending on the sample. The chosen duration was 3
seconds, as proposed by [8], stating that all of the ‘onsets
and attacks of the sound take place within the first 3
seconds’. To facilitate data handling, we converted all data
samples from the original MP3 audio file format to WAV
format. Additionally, we generated a CSV file containing
file names, folder names, and corresponding class labels
for each audio sample to make annotation easier during
preprocessing and training.

III. METHODS

A. Preprocessing

When it comes to processing and feeding audio data
into neural networks, several concepts need to be consid-
ered. The sound produced by a musical instrument is an
oscillation of air molecules caused by the vibration of the
sound source (e.g., strings, reeds, or lips). This periodic
alternation of high and low air pressure determines a sound
wave, which can be represented by a waveform (Fig. 2).
A waveform is a visual representation of the raw audio
signal in the time domain, having amplitude values on the
y-axis, and time on the x-axis.

In the real world, audio signals are rarely just pure sine
or cosine waves. Nevertheless, it is possible to approxi-
mate complex periodic signals using a sum of elementary
trigonometric functions of different wavelengths, frequen-
cies, and amplitudes. This is known as the Fourier series.

(a) Cello (b) Flute

(c) Trombone

Fig. 2: Waveforms of single notes being played on
different instruments

We heavily rely on this concept during sound analysis
when we try to extract information about the signal’s
constituent parts to gain a better understanding of its nature
and origin.

In the following text, we describe four sound prepro-
cessing methods, each focusing on different components
of audio signals and human perception of sound.

Spectrograms. One of the most observed wave features
of audio signals is their frequency. Knowing that complex
sound is composed of many sinusoids with different fre-
quencies, a lot can be learned by extracting a frequency-
power spectrum of the signal. A spectrum represents a
distribution of frequencies over the entire time domain of
the signal. It is performed by the fast Fourier transform
(FFT), and it gives information about how much each
frequency component (aka harmonic) contributes to the
overall waveform of the signal. It is generally presented as
a two-dimensional graph in the frequency domain, having
magnitude on the y-axis and frequencies measured in
hertz on the x-axis. However, considering that this type
of representation captures the frequency distribution of the
entire waveform, the information about frequencies at each
given moment in time is lost.

To preserve time domain features, a more profound
transform is applied to the raw signal. This is called a
short-time Fourier transform (STFT). STFT consists of
many FFTs which are computed throughout several time
intervals. These time intervals are called frames, and their
lengths are defined by a frame size measured in samples.
Another important parameter is the hop length, which
determines the distance in samples between each frame.
Setting a hop length that is smaller than the frame size
causes frames to overlap, thus minimizing spectral leakage
at the edges of the transformed signal. Finally, as a result
of STFT, we get a spectrogram. Spectrograms are three-
dimensional representations of sound in both frequency
and time domains, with frames on the x-axis, frequency on

MIPRO 2023/AIS 1319



(a) Cello

(b) Flute

(c) Trombone

Fig. 3: Spectrograms

the y-axis, and magnitude on the z-axis, often visualized
by a color bar.

Fig. 3 shows spectrograms of a single note being played
by cello, flute, and trombone. In our case, a sample
rate of 22.05 kHz was used for all audio samples. To
perform STFT, we used a frame size of 2048 samples
and a hop length of 512. This resulted in a 1025 × 126
sized matrix which was going to be treated as input data
for our classification models. The y-axis shows frequency
bins instead of continuous frequency. Frequency bins are
simply intervals of continuous frequency whose width can
be calculated as the sample rate divided by the frame size
of the FFT. In our case, having a sample rate of 22.05 kHz,
and a frame size of 2048, each bin represents around 10.77
Hz in the frequency domain.

Another point worth emphasizing is the measurement
unit on the magnitude axis, which has to do with the
fact that the human auditory system is logarithmic in
nature. This means that we perceive certain features of
sound, such as pitch and loudness, in a nonlinear fashion.
For this reason, we decided to represent magnitude in
decibels (dB), which is a measure of intensity level based
on the logarithmic scale. This was used throughout all
preprocessing methods, in an attempt to mimic the way
humans perceive sound.

Mel spectrograms. Another important characteristic of
sound perception is pitch. Despite being closely correlated
to frequency, pitch is a subjective measure that portrays
nonlinear tendencies. Because of this, the same differences
in the lower frequency range are perceived as further apart

(a) Cello

(b) Flute

(c) Trombone

Fig. 4: Mel spectrograms

1320 MIPRO 2023/AIS



than those in the higher frequency range. To create a
perceptually relevant frequency representation of sound,
we apply the logarithmic scale on the frequency values
of the spectrogram, which results in a Mel spectrogram.
Equal distances between values on the mel scale have
the same perceptual distance in pitch, with 1000 mels
being equal to 1000 Hz, by agreement. When creating
a Mel spectrogram, it is important to define the number
of mel bands to be used during conversion. Mel bands
define the range of perceptually relevant frequencies. More
specifically, they determine which points of the signal’s
frequency range will be converted into mel scale. In our
case, 128 mel bands were used, which ultimately resulted
in data samples of size 128× 126.

Fig. 4 shows Mel spectrograms of cello, flute, and trom-
bone. Equation (1) is used to convert frequency expressed
in hertz to frequency expressed in mels.

m = 2595 · log(1 + f

700
) (1)

MFCCs. Another highly subjective aspect of sound is
timbre. It is often described as the color of sound that
is unique to each and every instrument. Timbre is what
acoustically sets apart two instruments playing the same
note at the same intensity, for the same duration of time.

Features that are commonly used to extract timbral
and textural aspects of sound are Mel-Frequency Cepstral
Coefficients or MFCCs. They convey information about
the spectral envelope, spectral detail, harmonic content,
and amplitude and frequency modulation of the signal
(aka tremolo and vibrato). Some of these elements can
easily be mapped onto characteristics of speech generation,
specifically glottal pulse, formants, and frequency response
of the vocal tract. For this reason, MFCCs are often used
in speech recognition tasks [5].

The signal’s cepstrum is computed as an inverse Fourier
transform applied on the log amplitude spectrum of the
signal. This is given by the expression in (2). Cepstral
coefficients with positive values signalize that spectral
energy is mostly present in the lower frequency regions,
whereas negative values indicate higher frequencies.

C[x(t)] = F−1(log(F [x(t)]) (2)

When extracting audio features using the MFCC
method, several parameters have to be defined. To stay
consistent with the rest of examined methods, we used
22.05 kHz as the sampling rate, 2048 samples for the
frame size, the hop length of 512 samples, and 128 mel
bands. Due to the input size restriction of our VGG
classification model, 32 MFCC coefficients were chosen
instead of 13, which is a number traditionally used in
machine learning. The reason behind using the lowest
possible value of MFCCs is the fact that they contain
the most relevant timbral information, specifically the
characteristics of the spectral envelope. As a result of
preprocessing using the MFCC method, we get data points

(a) Cello

(b) Flute

(c) Trombone

Fig. 5: MFCCs

of size 32 × 126. A visual representation of MFCCs for
cello, flute and trombone can be seen in Fig. 5.

LFCCs. Linear-Frequency Cepstral Coefficients, or
LFCCs, are a feature extraction method similar to MFCCs.
The only major difference is that they use a linear fre-
quency scale instead of the logarithmic one. This way,
audio signals are being treated in disregard to human
perception of pitch, therefore preserving a better resolution
in the higher frequency regions of the sound [13]. To
perform preprocessing, we used 32 LFCC coefficients, due
to the previously mentioned reasons. Since LFCCs don’t
use mel scaling, there was no need to define the number of
mel bands. All of the other parameters remained the same
as in previous methods. The resulting matrix had the same
dimensions as the one derived by the MFCC method, i.e.,

MIPRO 2023/AIS 1321



(a) Cello (b) Flute

(c) Trombone

Fig. 6: LFCCs

32 × 126. LFCCs of a single note played by cello, flute
and trombone are visualized in Fig. 6.

B. Classification

To get a better understanding of how each preprocessing
method contributes to the overall efficiency of instrument
classification, we decided to compare them using three
different Deep Learning architectures.

The first architecture was a simple, custom-made con-
volutional neural network with four convolutional blocks,
one flatten layer, one linear layer and a softmax layer at the
end. Each convolutional block contained one 2D convo-
lutional layer, a ReLu activation function, and a 2D max
pooling layer. The second architecture was the standard
VGG-16 convolutional neural network which consists of
16 convolutional layers. The first Visual Geometry Group
(VGG) architecture was proposed by [14]. Lastly, we used
ResNet-34 as our third architecture. ResNet-34 is a state-
of-the-art image classification model that consists of 34
convolutional layers, and was first presented in [15].

The reason behind using several Deep Learning archi-
tectures in our experiments was to compare the prepro-
cessing methods with a more general approach, as well as
to eliminate any potential biases.

Furthermore, the dataset was split randomly into 80%
of training samples and 20% of test samples. All of the
methods were trained and tested on the same data samples.
The models were trained for 30 epochs, using a batch size
of 128. We used the cross-entropy loss function and the
Adam optimizer with parameters Beta1 = 0.9 and Beta2
= 0.999. A learning rate of 0.00001 was used for all
methods and models, and weight decay was set to None.
The models were evaluated after the last epoch using test
samples. Additionally, the experiment was repeated several
times for each method and the best accuracy results were
saved for analysis.

IV. RESULTS

The accuracies of the trained models for the smaller
and larger dataset are shown in Table I and Table II,
respectively. The tables display the best-achieved accuracy
results for each method.

TABLE I: Results - smaller dataset (3 classes)

Custom CNN VGG-16 ResNet-34
Spectrograms 99.04% 100.0% 99.81%

Mel spectrograms 97.11% 100.0% 100.0%
MFCCs 97.69% 100.0% 100.0%
LFCCs 91.91% 100.0% 100.0%

TABLE II: Results - larger dataset (15 classes)

Custom CNN VGG-16 ResNet-34
Spectrograms 39.91% 99.84% 99.72%

Mel spectrograms 47.17% 99.72% 100.0%
MFCCs 53.27% 100.0% 100.0%
LFCCs 42.22% 99.44% 100.0%

When observing the results for the smaller dataset,
we notice an interesting occurrence of 100% accuracy
throughout majority of the cases. This becomes particu-
larly apparent with more complex Deep Learning archi-
tectures (VGG and ResNet). In this case, all 3 classes
were noticeably distinct, which resulted in deep learning
architectures being able to successfully classify the in-
struments in all cases, thanks to their high generalization
ability, especially on small dataset with distinct samples.
The dataset contains simple musical notes and phrases
played similarly within each class, resulting in low intra-
class variance. This allowed models to focus on inter-class

(a) Smaller dataset (3 classes)

(b) Larger dataset (15 classes)

Fig. 7: Visual representation of accuracy results

1322 MIPRO 2023/AIS



differentiation, leading to effective performance across all
methods.

Judging by the accuracy of the custom CNN, spectro-
grams seem to have given the best results when it came
to the smaller dataset. They were followed by MFCCs
and Mel spectrograms, while LFCCs produced noticeably
lower results. However, it is important to note that during
training, spectrograms required a lot more memory and
computational power than other methods. This may be due
to a significant difference in input size that we get as a
result of preprocessing with spectrograms.

If we look at the larger dataset, the efficiency of each
method becomes more apparent. Although comparing the
methods in combination with VGG and ResNet doesn’t
provide us with much information, the results of the
custom CNN display clear differences - MFCCs seem to
outperform other methods, with Mel spectrograms taking
the second place. LFCCs along with spectrograms produce
poor results when tested on a dataset with less distinguish-
able classes.

These results can be explained through the nature of
each feature extraction method. Both MFCCs and Mel
spectrograms use the mel scale instead of linear scale
to preserve the perceptual relevance of the frequency
spectrum. MFCCs, being built on top of Mel spectrograms,
extract additional information about timbral and textural
aspects of sound. Therefore, seeing that our dataset con-
sists of instruments playing the same notes with similar
intensities, timbre becomes the most important mean of
distinguishing between closely related classes. This is
why MFCCs tend to outperform other feature extraction
methods in the task of musical instrument classification.
MFCCs combined with strong ResNet or VGG archi-
tectures serve as an excellent cornerstone for building
successful audio classification models.

V. CONCLUSION

The goal of this paper was to provide an overview of
four preprocessing methods and their efficiency in the task
of musical instrument classification. We ran several ex-
periments and compared spectrograms, Mel spectrograms,
MFCCs and LFCCs as tools for audio feature extraction.
The preprocessed data was fed into three types of Deep
Learning architectures, and the experiments were repeated
for three and fifteen classes of musical instruments. Spec-
trograms showed an unusually high performance when
it came to a simpler dataset. However, as the number
of classes grew higher, their performance significantly
dropped. On the other hand, the rest of the preprocessing
methods portrayed consistency in both scenarios. The
results showed that MFCCs performed the best job of

capturing crucial audio features, especially when it came
to less distinguishable classes.

In conclusion, a thoughtful selection of the prepro-
cessing method can significantly impact the results of
classification. For this reason, it is important to understand
which features of sound are relevant to the given problem.
Although a strong Deep Learning architecture can partially
alleviate the effects of preprocessing, it is still important
to pay attention to the nature of each feature extraction
method.

REFERENCES

[1] J. D. Deng, C. Simmermacher, and S. Cranefield, “A study on
feature analysis for musical instrument classification,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 38, no. 2, pp. 429–438, 2008.

[2] A. Eronen, “Comparison of features for musical instrument recog-
nition,” in Proceedings of the 2001 IEEE Workshop on the Ap-
plications of Signal Processing to Audio and Acoustics (Cat.
No.01TH8575), 2001, pp. 19–22.

[3] S. Chakraborty and R. Parekh, Improved Musical Instrument Classi-
fication Using Cepstral Coefficients and Neural Networks, 09 2018,
pp. 123–138.

[4] K. Racharla, V. Kumar, C. B. Jayant, A. Khairkar, and P. Harish,
“Predominant musical instrument classification based on spectral
features,” in 2020 7th International Conference on Signal Process-
ing and Integrated Networks (SPIN), 2020, pp. 617–622.

[5] W. Han, C.-F. Chan, C.-S. Choy, and K.-P. Pun, “An efficient
mfcc extraction method in speech recognition,” in 2006 IEEE
International Symposium on Circuits and Systems (ISCAS), 2006,
p. 4.

[6] M. Deng, T. Meng, J. Cao, S. Wang, J. Zhang, and H. Fan,
“Heart sound classification based on improved mfcc features and
convolutional recurrent neural networks,” Neural Networks, vol.
130, pp. 22–32, 2020.

[7] E. Şaşmaz and F. B. Tek, “Animal sound classification using a con-
volutional neural network,” in 2018 3rd International Conference
on Computer Science and Engineering (UBMK), 2018, pp. 625–
629.

[8] S. K. Mahanta, A. F. U. R. Khilji, and P. Pakray, “Deep neural
network for musical instrument recognition using mfccs,” Com-
putación y Sistemas, vol. 25, no. 2, pp. 351–360, 2021.

[9] S. Prabavathy, V. Rathikarani, and P. Dhanalakshmi, “An enhanced
musical instrument classification using deep convolutional neural
network,” International Journal of Recent Technology and Engi-
neering (IJRTE), vol. 8, 11 2019.

[10] D. Szeliga, P. Tarasiuk, B. Stasiak, and P. S. Szczepaniak, “Musical
instrument recognition with a convolutional neural network and
staged training,” Procedia Computer Science, vol. 207, pp. 2493–
2502, 2022, knowledge-Based and Intelligent Information Engi-
neering Systems: Proceedings of the 26th International Conference
KES2022.

[11] R. Profeta and G. Schuller, “End-to-end learning for musical
instruments classification,” in 2021 55th Asilomar Conference on
Signals, Systems, and Computers, 2021, pp. 1607–1611.

[12] London philharmonic orchestra dataset. [Online]. Available:
https://philharmonia.co.uk/resources/sound-samples/

[13] X. Zhou, D. Garcia-Romero, R. Duraiswami, C. Espy-Wilson, and
S. Shamma, “Linear versus mel frequency cepstral coefficients for
speaker recognition,” in 2011 IEEE Workshop on Automatic Speech
Recognition Understanding, 2011, pp. 559–564.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

MIPRO 2023/AIS 1323




