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Abstract—Algorithms for solving decision-making prob-
lems under uncertainty are often employed in complex envi-
ronments such as financial markets. Reinforcement learning
(RL), a mathematical framework for sequential decision-
making, is widely used in many financial decision-making
problems, such as portfolio optimization, optimal execution,
and market making. However, RL methods require a manual
design of the reward function, which can be challenging
in noisy market environments. Moreover, in such environ-
ments, it is often easier to demonstrate the desired behavior
rather than manually engineer it. These problems can be
solved using imitation learning (IL) algorithms, which extract
knowledge from expert demonstrations by directly imitating
the desired behavior or learning the expert’s reward function.
This paper introduces the foundational methods in IL, out-
lines the differences with familiar frameworks, and provides
a survey of the current IL applications in finance.

Keywords—imitation learning, reinforcement learning,
quantitative finance, machine learning

I. INTRODUCTION

With the advances in information technology and the
ever-increasing amount of data, the number of potential
applications using artificially-intelligent agents capable of
mimicking human behavior and making decisions has
increased rapidly in the financial industry. A popular ap-
proach to learning autonomous behavior is reinforcement
learning (RL) [1]. RL agents learn by interacting with the
environment through trial and error learning and receiving
feedback for their actions, thus improving their behavior
using their experience. Despite the recent success in many
fields, especially with advances in deep reinforcement
learning [2], [3], RL algorithms have shown shortcomings
in complex and dynamic environments such as financial
markets. Learning by interaction in the context of markets
usually involves historical data, which is highly stochastic
and noisy. Under these circumstances, data-driven methods
frequently fail to generalize and are often less effective
than experts. Moreover, manually designing a reward
function proves to be a sensitive issue as it may require a
significant amount of experiments and feature engineering
[4]. All of the mentioned problems have elevated the study
of imitation learning (IL) [5].

Imitation learning (also known as apprenticeship learn-
ing or learning from demonstrations) deals with learning
behaviors from expert demonstrations. Historically, it is
an interdisciplinary research area with multiple existing
taxonomies stemming from robotics, dynamic systems,
and other engineering-based methods [6]. It has been

applied to control domain problems such as navigation [7]
and robotic manipulation [8]. Progress in high-dimensional
computation and machine learning, particularly deep learn-
ing, has given rise to potential applications of AI-based IL
methods in the financial industry.

Traditionally, the two main branches of study within
IL are behavioral cloning [9] and inverse reinforcement
learning [10]. Behavioral cloning (BC) methods learn to
perform a task by directly replicating observed expert be-
havior. They are closely related to a traditional supervised
learning setting as they learn a mapping from features
(states) to labels (actions). On the other hand, inverse rein-
forcement learning (IRL) methods learn a reward function
from the observed expert behavior, leveraging the learned
reward function later on through RL. However, due to a
rise in research on generative adversarial networks [11],
and their connection to IRL [12], a new IL branch based
on the generative adversarial imitation learning algorithm
[13] started to develop. Given that this algorithm does not
belong to either BC or IRL (as it follows the IRL structure
but does not recover the reward function), researchers
nowadays tend to form an additional IL branch often
referred to as adversarial imitation learning (AIL) [14].
Even though IRL and AIL are closely related, this paper
will follow the newly formed taxonomy of three separate
branches.

II. REINFORCEMENT LEARNING

Reinforcement learning is a machine learning approach
for learning optimal decisions by interacting with an
environment in a trial and error fashion. The environment
dynamics are described using Markov Decision Processes
(MDPs). Formally, an MDP is a tuple ⟨S,A,P, γ,R, p0⟩:

• S is a set of states,
• A is a set of actions,
• P : S × A × S 7→ [0, 1] is a transition probability

matrix,
• γ ∈ [0, 1] is a discount factor,
• R : S ×A 7→ R is a reward function,
• p0 is an initial state distribution.

At each step t, the agent makes an action At based
on the environment’s current state observation St. Per-
forming an action At in state St determines the next
state St+1 and the reward Rt+1. This iterative process is
repeated, and sequences of states, actions, and rewards are
acquired (S0, A0, R1, S1, A1, R2, ..., St, At, Rt+1). The
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state-action sequence is referred to as a trajectory. MDP
states have Markov property, meaning that the next state
only depends on the current state and the current action,
not on the history of all the states and actions that were
taken before.

An agent’s behavior is determined by its policy π, which
can either be a deterministic or stochastic function. RL
is based on the reward hypothesis, which states that all
goals can be described by the maximization of cumulative
reward, which is mathematically expressed as:

Gt =
∞∑
k=0

γkRt+k+1.

The agent’s primary goal is to find a policy π∗ that
maximizes the expected return E[Gt], i.e., the expected
cumulative reward over all future time steps, for each given
state:

π∗ = arg max
π∈Π

E[Gt|St = s],∀s ∈ S.

Any data-driven method well suited to solving problems
formulated in terms of an MDP and yielding an optimal
policy can be considered an RL method. Numerous RL
methods are broadly categorized into value-based, policy-
based, and actor-critic. Another categorization is based on
the use of model dynamics and transition probabilities
during training: model-free and model-based methods.
Further information on RL algorithms can be found in
[1].

RL and IL algorithms handle decision-making tasks
and differ from supervised learning in terms of sequential
and non-i.i.d data. As discussed in Section I, IL is a
useful tool for dealing with the limitations of RL in
complex environments. It is a common assumption that
having prior knowledge about a problem is more effective
than learning solely through trial and error. IL methods
incorporate prior knowledge about a specific problem by
leveraging experts and collecting their demonstrations as
a set of trajectories. IL approach assumes this is a more
effective way of addressing behavioral learning, as it’s
often easier to demonstrate the optimal behavior for a task
than mathematically formulate it.

III. IMITATION LEARNING

Imitation learning is an approach for learning the de-
sired behavior from expert demonstrations. This approach
is helpful in scenarios where it is more practical for
an expert to demonstrate the ideal behavior rather than
compute the optimal policy or define the reward function
manually. An expert can either be a human or any agent
capable of optimally performing a task.

A. Behavioral Cloning

Behavioral cloning methods are direct IL methods that
learn a mapping from states to actions without recovering
the reward function [9]. These methods are formulated

Algorithm 1: Dataset Aggregation (DAgger)
1: Initialize D ← ∅, initialize π̂1 to any policy in Π
2: for iteration i = 1 to N do:
3: Let πi = βiπ

∗ + (1− βi)π̂i

4: Sample T -step trajectories using πi

5: Get dataset Di = {(s, π∗(s))} of visited states by
πi and actions given by expert

6: Aggregate datasets: D ← D ∪Di

7: Train classifier π̂i+1 on D
8: endfor
9: return best π̂i on validation set

as a supervised learning problem where the dataset is a
set of state-action pairs D = {(si, ai)}Ni=1 obtained from
the expert, and the goal is to find the optimal policy π∗

[15]. The policy refers to a regressor or classifier here.
BC methods are efficient because of their ability to learn
without interacting with the environment, as they are not
formulated as an MDP.

There are some tradeoffs, however, as supervised learn-
ing methods assume actions in the expert’s trajectories are
i.i.d. BC methods violate that property because actions
(labels) influence future states (features) and thus influ-
ence future data distribution. This distribution mismatch
problem leads to compounding errors when the agent finds
himself in a state he has never been to before. Ideally, at
each step t, the agent finds himself in a state drawn from
the state distribution of expert trajectories (st ∼ pπ∗(st)).
In the setup described above, the agent will find himself in
the state distribution resulting from taking action induced
by the learned policy in the previous step (st ∼ pπθ

(st)).
A supervised approach to imitation learning disables the
agent from learning to recover from failures and fails to
generalize to unseen scenarios.

BC methods tend to solve this problem by changing
pπθ

(st) using data augmentation techniques. While using
standard data augmentation techniques such as synthetic
data and expanded state spaces helps, most BC methods
build on specific data augmentation technique which in-
teractively queries the experts in additional data points
resulting from applying the current policy [16]. The idea
is to start from an expert policy and iteratively and slowly
replace it with the learned policy. Using this approach,
the agent is retraining under the new state distribution
after each policy change, and thus BC algorithms reduce
imitation problem to supervised learning.

Dataset Aggregation (DAgger) [16] is an iterative BC al-
gorithm that learns a deterministic policy using the dataset
aggregation technique. It is shown in detail in Algorithm
1. This data-efficient approach combines the presence of
the expert with expanding the space of possible trajectories
to improve performance in unseen scenarios and recover
from failure. The main drawbacks of the algorithm are
frequent expert querying and the computational burden of
iteratively updating the agent’s policy. Later research pa-
pers such as [17]–[19] were proposed to improve DAgger.
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B. Inverse Reinforcement Learning

Inverse reinforcement learning methods are indirect IL
methods that learn a reward function from expert demon-
strations [20]. As the reward hypothesis states that all
goals can be described by the reward function formulation,
RL assumes that the reward function, not policy, is the
most robust and transferable definition of the learning
task [21]. IRL methods describe the environment using an
MDP, and the input to an IRL method consists of a tuple
⟨S,A,P, γ, p0,D⟩, where D = {τ1, τ2, ..., τn} is a set of
expert demonstrations, and τi represents a trajectory. The
goal is to recover the reward function R. All IRL methods
follow the same iterative template, which allows for the
simultaneous improvement of the learned policy and the
learned reward function [20]:

1) Collect expert demonstrations D ∼ π∗.
2) Initialize the reward function rw.
3) Learn the policy πL by using RL with respect to the

current rw.
4) Update parameters w to minimize the divergence

between the expert policy π∗ and the learned policy
πL.

5) Repeat the previous two steps until divergence is
reduced to the desired level.

The problem of determining the reward function is
ill-posed because a policy can be optimal for multiple
reward functions [4]. One of the first IRL algorithms which
addressed the solution ambiguity is presented in [21]. The
authors assume the reward function is linear in parameters
and use the concept of feature expectations to resolve the
ambiguity. Feature expectations are the expected value
of state (and/or action) features, defined in the reward
function, accumulated over the trajectory. Furthermore,
they are estimated by sampling trajectories and used to
express the value of a policy. The authors find a policy
πL and its corresponding rw such that the difference
between the value of the expert policy π∗ and πL is smaller
than a predefined margin ϵ. IRL methods that optimize
different margins are referred to as the maximum margin
methods [4], [21], [22]. Minimizing the margin based on
feature expectations is a heuristic approach and therefore
has significant drawbacks when expert demonstrations are
suboptimal. This leads to the case where no single reward
function makes the expert policy both optimal and better
than all the other policies.

To tackle these issues, [23] introduced the method
based on the probabilistic model of behavior. This method
chooses a distribution p(τ |w) that maximizes the entropy
among the distributions that match the feature expectations
of the demonstrator. Maximum entropy method builds on
maximum margin methods and alleviates some of their
fallbacks. However, this method still requires solving the
full RL problem for optimal policy in the inner loop,
carefully designing features to impose the structure on the
reward function, and a model of the environment. To apply
these methods in real-world settings, especially in finance,
the problem of learning the expressive reward function

Initial policy Expert
demonstrations 

Update reward  using  and 

Generate policy samples 
from 

Final policy Final reward 

Update 

Fig. 1: Guided cost learning (GCL) algorithm

under unknown dynamics needs to be solved.
Guided cost learning (GCL) algorithm was proposed

in [24], combining sample-efficient handling of unknown
dynamics with neural network representation of reward
function to handle existing problems in the literature. The
visual guide to the algorithm is given in Fig. 1. Later
research like [25]–[27] explored ideas such as ranking the
expert demonstrations and integrating IRL methods with
other methods such as self-supervised learning.

Most of the problems found in BC and IRL methods (ro-
bustness, unknown dynamics, suboptimal demonstrations)
have been tackled with generative adversarial imitation
learning (GAIL) [13], which combines the robustness of
IRL and the efficiency of BC to improve IL methods
further.

C. Adversarial Imitation Learning

The connection between IRL and GANs was presented
in [12], where authors conclude that sample x represents
a trajectory τ , generator G represents an agent’s policy
πL ∼ p(τ), and discriminator D is used as a proxy for
reward [12].

GAIL algorithm [13] leverages the mentioned connec-
tion between IRL and GANs by training a policy that
reproduces the expert behavior and a discriminator that
distinguishes trajectories induced by the agent’s policy
from trajectories demonstrated by the expert. GAIL fits
a parameterized policy πL

θ , and a discriminator network
Dw : S×A → [0, 1]. The discriminator network represents
the cost function, the negative of the reward function. The
iterative algorithm is shown in detail in Algorithm 2. At
the end of an iterative process, GAIL does not yield the
reward function and, as such, can not be considered an IRL
method. Ever since the introduction of GAIL, the research
community has made further proposals on building upon
it and applying it to real-world scenarios [28]–[33].
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Algorithm 2: Generative Adversarial Imitation
Learning (GAIL)

1: Input: expert trajectories τexp ∼ π∗, initial policy
and discriminator parameters θ0, w0;

2: for iteration i = 1 to N do:
3: Sample trajectories τi ∼ πL

θi
4: Update discriminator parameters from wi to wi+1

with gradient

Eτi [∇w log(Dw(s, a))]+Eτexp [∇w log(1−Dw(s, a))]

5: Update policy parameters from θi to θi+1, using
the TRPO rule with cost function log(Dwi+1

(s, a))
6: endfor
7: return optimized policy parameters θ

IV. APPLICATIONS IN FINANCE

Imitation learning applications in finance can be broadly
classified into identifying investment behavior and learning
investment strategies. Important mechanisms that drive
financial markets, such as price discovery, market liq-
uidity, and order flow, can be explained by studying
investment behavior and evaluating its economic impact.
Those studies can also be of interest to market regulators
and operators to counter possible fraudulent practices and
maintain the transparency and functioning of financial
markets. The other group of IL applications in finance
considers the problem of investment strategy design across
different assets and periods. They do so by observing
trading history data from experts, which may be human
(such as fund managers or prop traders) or an oracle with
complete information (access to past and future data).
Although the ML literature has recently become more
prominent in finance, the applications of IL in finance have
yet to be studied in depth [34].

One of the first applications was the identification of
high-frequency trading strategies based on order book data
[35]. The authors collected up to a month of order book
audit trail data from the CME exchange for the E-Mini
S&P 500 index futures. They modeled trader behavior
as an MDP and used order book trails as demonstration
data to infer traders’ policies and reward functions. The
state space was defined by inventory positions and order
volume imbalance at the first five levels of the limit order
book (LOB). Action space was defined by three actions
(placing a limit order (LMT), canceling an existing limit
order (CXL), and placing a market order (MKT)) directed
at any of the ten buckets that LOB was divided into. The
authors used model-based IRL methods which estimated
the state transition probability matrix. Reward functions
offered useful features for supervised learning, such as the
classification of traders, and unsupervised learning, such as
the categorization of traders. They introduced the gaussian
process IRL (GPIRL) method to learn traders’ reward
functions and compared it to linear IRL (LNIRL) from
[4] in terms of trading strategy identification. They used
an SVM classifier to identify traders based on reward func-

tions recovered from mentioned IRL methods and showed
that GPIRL outperforms LNIRL. The authors showed that
IRL methods are superior to statistical approaches, as they
aim to learn the objectives of traders in various market
conditions. That makes IRL methods more informative and
robust and provides a solid foundation for identifying the
behavioral patterns of traders.

In contrast to previous research that relied on labeled
market participant data, [36] aimed to model traders’
behavior using only unlabeled market data. The authors
proposed a neural network-based multi-modal IL model
which performs latent segmentation of stock trading strate-
gies by their reward function. Each segment represents
an individual strategy and has its reward function. An IL
model is defined for each segment and trained to predict
which trading segment was most likely to have submit-
ted a particular order at a particular time. Finally, the
model predicts order submission probability by combining
outputs from each segment. State space features included
price series and order book features at ten levels above
and below the mid-market price. Action space consisted
of order type (LMT, MKT, CXL), discretized order price,
and volume. Their proposed model outperformed other
IL benchmarks, such as GAIL, in terms of accuracy on
historical order book data obtained from the Tokyo Stock
Exchange. Thus, it provides a meaningful interpretation of
traders’ behavior. The limitation of their study is that the
segment classification ability depends significantly on the
formulation of the reward function.

In [37], the authors designed an investor sentiment
trading system using IRL. They modeled the financial
market dynamics as MDP and treated investor sentiment
as actions in different market states. They extracted the
reward function using GPIRL and leveraged the learned
reward function in supervised learning to construct a trad-
ing strategy. The hypothesis was that the market sentiment
reward function could be an effective feature space for
predicting future financial market trends as it filters out
irrelevant news sentiment signals. News sentiment from
the Thomson Reuters news analytics database was used to
proxy investor sentiment toward the U.S. market. State
variables included discretized log return and volatility
to describe the financial market conditions. At the same
time, action space consisted of investor sentiment shocks
to the market, categorized into three categories: positive,
neutral, and negative. From an academic standpoint, this
research offers a novel method for uncovering the un-
derlying connection between the financial market and in-
vestor sentiment. From a practical standpoint, this research
shows that an IRL-based trading strategy is superior to
benchmark strategies based on S&P 500 index and market-
based ETFs, as well as a few other news sentiment-based
strategies.

In [38], a trading strategy combining BC and RL was
proposed. The authors modeled the market, consisting
of minute-level frequency data, as a partially observable
MDP (POMDP). They employed a recurrent deterministic
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policy gradient (RDPG) model for solving the POMDP.
Observation space features consisted of cumulative ac-
count profits, price series, and technical indicators. The
action space was defined as a continuous probability vector
corresponding to taking the trading positions, but actions
(short/long) are discretized to {−1, 1}. Differential Sharpe
ratio was used as the reward function. The model was
improved with BC by using the dual thrust strategy as
an oracle, having access to all historical data. This IL
technique enhances the trading agent’s financial domain
knowledge. BC was added to the model by incorporating
two separate modules. Firstly, the agent was pre-trained
using demonstrations from the dual thrust strategy, and
secondly, the intra-day oracle was introduced. The oracle
takes a long position at the lowest price and a short
position at the highest price in a given day. Its actions
were incorporated into the policy gradient to reduce the
inefficient exploration phase. The model was backtested
on IF and IC futures data, representative of stock index
futures in China, and outperformed other benchmarks
(long-only, short-only, and DDPG) in terms of Sharpe
ratio and total return. The authors demonstrated that the
BC modules significantly enhance the model’s profitability
metrics through an ablation study, revealing the impact of
each component on performance. The final study demon-
strates the model’s ability to generalize by evaluating its
performance on markets different from those it was trained
on.

Goal-based wealth management problem (optimization
of retirement plans or target-dated funds) was explored
in [39] with IRL and RL. G-learner, the algorithm based
on G-learning (probabilistic extension of Q-learning), was
used in the RL wealth management problem. In contrast,
the GIRL (G-learning IRL) model was used to infer the
rewards of financial agents. The state space was defined
as the vector of dollar values of asset positions and the
action space as the vector of dollar-valued changes in asset
positions. The authors defined a parameterized reward
function that imposes a penalty for the underperformance
of a portfolio relative to a target, along with regularization
terms. The GIRL algorithm has been used to infer the
reward function parameters, given a history of positions
in an investment portfolio and an agent’s allocation de-
cisions. GIRL imitates the G-learner by minimizing a
loss function over the state-action trajectories generated
by the G-learner. Simulated models of equity returns
were utilized to showcase the application of the G-learner
and GIRL algorithms in goal-based wealth management.
The results show that the G-Learner outperforms the
benchmark equally-weighted portfolio strategy and that
GIRL’s learned parameters are close to the original G-
learner parameters.

A combination of IRL and RL for optimal asset al-
location was proposed in [40]. The IRL model learned
the investment strategies of portfolio managers using their
trading histories, and the RL model was used to improve
those strategies. The T-REX algorithm [27] is utilized
in the IRL step, incorporating the portfolio performance

ranking of managers into its optimization process and
eliminating the assumption of an optimal or near-optimal
policy in the demonstrated trading history. The state and
action vectors are the same as in [39]. The reward function
is a quadratic function of the state and action, consisting
of only four parameters due to the limited data available in
portfolio management applications. It incorporates penalty
for under-performance of the traded portfolio relative to
its moving target, transaction costs, and trades constraint.
The recovered reward function was used in the G-learner
algorithm to further optimize the investment policy. The
dataset included 18 mutual funds’ data with monthly
holdings, trades, and cashflows, but due to data constraints,
all stocks within each portfolio have been grouped by
industry sector. Experiments showed that the combination
of IRL and RL outperforms the majority of fund managers.
Additionally, inferred reward parameters can be used to
group different trading strategies and gain a deeper under-
standing of fund managers’ actions.

In [41], the authors introduced an RL framework for op-
timal order execution. They improved noisy and imperfect
data in their RL framework by using the learning-based
oracle teacher with access to all historical data. Model
over-fitting was prevented by training universal strategy on
various instruments. State space consisted of the elapsed
time, remaining inventory to execute, price, and volume
of each time step. Action corresponded to the discrete
proportion of the target order, and the reward function con-
sisted of trading profitability and market impact penalty.
Two agents were being trained: a student and a teacher.
The teacher agent, who has access to perfect information,
learns a policy that acts as an oracle. This policy then
guides the learning of the student agent, which is the agent
used in real-time order execution. Finally, the student agent
is tested and compared to benchmarks in the China A-
shares market using a dataset that includes minute-level
market information. Experiments showed that the universal
IL model outperforms all the other models and that teacher
guidance significantly boosts the model’s performance.

V. CONCLUSION

Machine learning methods, combined with growth in
computational power and the amount of data, have enabled
significant development of imitation learning in the last
decade. IL algorithms aim to learn an optimal policy given
expert demonstrations, and they were shown to be effective
in financial applications. IL methods were found to outper-
form other statistical approaches in identifying investment
behavior. IL also learned investment strategies across
different assets and periods, outperforming baselines such
as market indices and machine learning based models.
These presented methods can serve as a future benchmark
in developing IL models. Selection of a labeling algorithm
as an oracle, investors’ suboptimal behavior, insufficient
training data, and feature representation are some of the
open IL research points in quantitative finance.
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