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Abstract -  Laser-Induced  Breakdown  Spectroscopy
(LIBS)  is  a  rapid  atomic  spectroscopy  technique  used  to
measure  the  concentration  of  elements  in  samples.  This
research paper uses supervised deep learning with a LIBS
database provided by National Institute of Standards and
Technology (NIST) to find out what kind of neural network
architecture can best predict element concentrations from
metal  alloy samples.  Accuracy of  predictions was  used to
evaluate the network architectures. Because collecting and
storing real  samples of  metal  alloys with a wide range of
element  concentrations  requires  a  lot  of  resources,  the
network’s ability to predict outside of training set’s range of
concentrations was also tested. The goal of the research was
to find out if NIST database together with machine learning
can  be  used  to  reduce  the  amount  of  real  alloy  samples
needed for LIBS calibration.
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I. INTRODUCTION

In this paper we explore what kind of neural network
architecture  is  best  suited  to  predict  element
concentrations  from  laser-induced  breakdown
spectroscopy  (LIBS)  data  generated  from  the  National
Institute  of  Standards  and  Technology  (NIST)  Atomic
Spectra Database (ASD) [1]. We also test if the network
can predict  concentrations outside of the training range.
As the generated data is similar to measured data, we try
to find the best kind of network without the need for large
number of samples and measurements [2].

Several studies have been made with machine learning
, LIBS and NIST data [3][4].  Many of the studies done
earlier   use  partial  least  squares  algorithms  or  support
vector machines. NIST data hasn’t been widely utilized in
training the algorithms and is often used for selecting the
spectral lines that are most interesting for the study.

II. GENERATED LIBS SPECTRA

The dataset  used for  the tests was acquired  through
NIST website using SimulatedLibs [5] with modifications
to acquire the spectra faster. The modifications were using
a  session  for  the  requests  and  using  multiprocessing.
Generated LIBS spectrum line intensities are determined
by  electron  temperature,  electron  density  and  the
elemental  composition  of  the  sample.  When  electron
temperature  and  density  stay  static  the  spectral  line
intensities  change  linearly  (Fig  1.)  as  a  function  of
elemental concentration when the data is generated on the
website  [6].  Changing  the  composition  affects  the
intensities  but  has  little  to  no  effect  on  the  relative

Figure 1: The relative line intensities stay the same when elemental
composition changes unless the elements have overlapping lines. The

line intensities from 100% copper (Cu) sample to 50% sample are
halved and lines from oxygen (O) are not visible in the plot since they
are less intense compared to Cu with the chosen electron temperature

and density. 
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intensities between lines where elements have no
overlapping spectral lines.

The generated dataset consists of 24 elements, C, Mg,
Al, Si, Ti, V, Fe, Co, Ni, Cu, Mn, Li, Zn, O, P, Pt, Au, Ag,
Ir,  W,  Pd,  Sn,  Tc,  and  Y,  with  combinations  of
concentrations from 100% to 1% with two elements, and
combinations of three element compositions of [33, 34,
33], [40, 20, 40], [20, 40, 40], [40, 40, 20], [60, 20, 20],
[20, 60, 20], [20, 20, 60], [80, 10, 10], [10, 80, 10], [10,
10,  80],  [15,  30,  55],  [30,  55,  15],  [55,  15,  30].  The
combinations add up to a  total  of  53,660 samples.  The
samples  are  of  electron  temperature  1  eV and  electron
density of 1e17 cm-3. The data was generated between
185 nm and 460 nm wavelengths,  with a  resolution of
0.067  nm,  because  a  spectrometer  used  in  our  other
experiments has an average resolution of 0.067 nm. The
labels are generated are 24 numbers, one for each element,
between 0 and 1.

The data has some abnormalities possibly due to cubic
spline interpolation used in the generation process. Some
of the samples have “tails” that are not spectral lines (Fig
2.). The data was not cleaned of these abnormalities prior
to the tests, and they might affect the results.

III. METHODOLOGY

TensorFlow  [7]  was  used  to  create  and  train  the
networks. The networks consisted of two fully-connected
hidden  layers  of  varying  widths,  input  layer  of  4094
and output layer of 24, one for each of the elements. The
hidden layers use ReLU [8] activation function, and the
output layer uses linear  activation. The linear  activation
was  chosen  instead  of  softmax,  because  in  real
measurements there can be elements present which are not
included in the datasets. A combination of 16, 32, 64, 128,
256, 512 widths for both hidden layers were tested, the 16
width layers were dropped from the tests after some time
because  the  other  sized  networks  consistently  showed
significantly better results.  Different  numbers of  epochs
and batch sizes were also tested. Epoch sizes from 5 to 40
with a step size of 5 were tested. Tested batch sizes were
2, 4, 8, 16, 32, 64, 128 and 256 [9]. Tests were also run
with  kernel  and/or  bias  regularization  applied  to  both
hidden  layers  using  default  settings  of  TensorFlow.
Altogether, more than 12800 networks were trained and
tested. The initialization of weights used was the default
in TensorFlow, glorot uniform [10]. Adam [11] with the
default hyperparameters from TensorFlow was used as an
optimizer.  The  data  was  randomly  divided  into  60:40
training:test sets. Mean squared error (MSE) was used to
evaluate  the  networks.  The networks  were  only  trained
once  with each  configuration of  epochs,  batch  size  and
different width layers because of the time it takes to train
each  network  and  the  number  of  combinations  was
already  sizable,  this  results  in  randomness  in  measured
MSE because of the randomness of weight initialization.
Dataset  was  scaled  to  0-1  range,  which  preserves  the
relative intensities of the peaks.

For testing how well a network can learn outside of the
training range, the test set was changed to copper samples
which had less than 70% of copper or more than 90% of
copper and the rest of the data was used as a training set.
This resulted in a training set with 48829 samples and test
set of 4831 samples. This was done to see if a network
could be trained to extrapolate outside of the range of real
samples,  which  are  difficult  to  get  and  store  in  large
numbers.

Inference time of the networks were tested with 1000
samples  picked  randomly  from  2000  samples.  A
prediction was made for each of the 1000 samples and the
time it  took to run inference  was recorded.  These  tests
were only done for the networks without bias and kernel
regularization  to  reduce  the  time to  run  the  tests  since
doing 1000 inferences for a network took approximately
45 to 60 seconds.  The tests were run on a GPU-server
using a NVIDIA RTX A5000, 10 cores  of AMD Epyc
7413 processor and 50 GB random access memory.

IV. RESULTS

The  average  inference  time  of  1000  independent
predictions  for  the  networks  was  52  seconds  with  a
standard deviation of 2.9 seconds, the fastest time being
41.7  seconds  and  the  slowest  82.8  seconds  as  seen  on
table 1. The tests might have been affected by some

Figure 2: Some of the samples have erroneous data, possibly a result of
cubic spline interpolation. The erroneous data is usually found at the

start or end of the spectrum. 
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Table 1: The data sorted by inference time, with 5 of the fastest and
slowest results showing. The three slowest times are clearly slower than
the rest of the tests.

Epochs Batch size
First
layer

Second
layer

Inference time (1000
samples)

5 2 16 16 41.681572 s

5 2 16 32 42.710497 s

5 2 16 64 44.343524 s

5 2 32 16 44.729965 s

5 2 16 256 44.830615 s

… ... ... ... ...

30 4 32 16 64.053025 s

30 4 64 128 64.097452 s

35 4 128 256 67.813859 s

20 128 32 32 72.505119 s

30 4 64 256 82.783849 s

unknown software or hardware issues. The inference
time was tested to see if the size of the network matters
for practical use. The inference tests were only run with
networks not using regularization to save time. The larger
networks achieve lower MSE than the smaller networks
and benefit more from longer training as seen in table 2.
The  networks'  ability  to  generalize  to  the  test  set  also
seems to benefit from having a larger batch size as the 100
lowest test MSE only have one network with less than 16
batch size.

Almost  all  the  networks  with  kernel  regularization
perform  worse  than  without  it,  but  for  most  of  the
networks the test  set  MSE is  lower  than minimum and
final loss from training. The minimum and final loss are
often the same which could mean that the networks with
kernel  regularization  could  benefit  from  more  training.
The worst MSE achieved was 0.024501 as shown in table
3.

Testing the networks' ability to generalize outside of
the training  concentration  showed that  the  network  can
predict outside of training range up to a point. The test
was conducted with the best performing network from the
first  test.  The  training  loss  after  40  epochs  was
0.00077266  and  the  test  set  MSE  was  0.004.  A
considerably larger training set most likely helped to bring
the training loss down. The closer the tested values are to
the training range of 70-90% the better the predictions are.
The largest  error  in predicting the copper concentration
was 85 percentage points, which came from a sample with
10% copper,  80%  carbon and 10% phosphorous.  In the
worst 20 predictions, 13 of the samples have copper and
oxygen in them and the other 7 have copper with 2 other
elements in them as shown in table 4. All the samples with
only copper and oxygen in the bottom 20 predictions have
15% or less copper. 133 predictions out of 4831 are less
than 1 percentage  point  off.  When looking at  the most
accurate predictions for copper we can see that prediction
of  other  elements  in  those  samples  was  off  tens  of
percentage points in some cases, as shown in table 5. Five
of the best performing networks were trained again to see
if  the  performance  was  consistent.  Each  of  the  five

Table 2: 20 networks with the lowest MSE. Larger networks and longer training achieve lower MSE with the test set.

Epochs Batch size First layer Second layer
Kernel

regularization
Bias

regularization
Minimum loss
during training

Final loss Test set MSE

40 32 512 128 No No 8.13e-4 8.18e-4 8.77e-4

40 256 512 256 No No 8.12e-4 8.20e-4 9.15e-4

40 256 512 512 No Yes 8.02e-4 8.02e-4 9.25e-4

35 64 512 128 No No 8.33e-4 8.33e-4 9.31e-4

35 128 512 128 No No 8.43e-4 8.43e-4 9.51e-4

35 128 512 256 No No 8.03e-4 8.25e-4 9.58e-4

35 32 512 128 No No 8.35e-4 8.35e-4 9.60e-4

40 64 128 512 No Yes 8.29e-4 8.29e-4 9.63e-4

25 128 512 512 No No 8.80e-4 8.80e-4 9.76e-4

40 16 128 512 No No 8.93e-4 8.93e-4 9.78e-4

40 64 64 512 No No 8.79e-4 8.83e-4 9.79e-4

35 64 128 512 No Yes 8.68e-4 8.68e-4 9.80e-4

40 256 512 128 No Yes 8.89e-4 8.89e-4 9.82e-4

25 128 512 512 No Yes 8.77e-4 8.77e-4 9.84e-4

30 64 512 128 No No 8.84e-4 8.96e-4 9.87e-4

30 32 512 512 No No 8.51e-4 8.56e-4 9.88e-4

30 128 512 256 No No 8.51e-4 8.51e-4 9.91e-4

40 32 512 256 No No 7.94e-4 7.94e-4 9.92e-4

40 64 512 256 No No 7.90e-4 7.90e-4 9.96e-4

25 32 512 512 No No 9.10e-4 9.10e-4 9.97e-4
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networks were trained 20 times and the test set MSE was
recorded  for  each  run.  In  figure  3 we can  see that  the
previously third best network is performing better than in
the  single  training  run  while  the  order  of  the  other
networks has stayed the same. The overall MSE seems to
be lower in the new tests, but the code was not changed.

V. CONCLUSION AND FURTHER RESEARCH

Predicting  concentration  from  generated  data  with  a
neural network is possible, but gets harder for data that is

further away from the provided training range. With the
data tested the network size can be quite small, and the
inference times are not affected much by the network size
at such a small scale. Further research can be done with
larger datasets and with varying electron temperature and
density. In the future the data should also be cleaned from
the  anomalies  caused  by  interpolation.  The  networks
could  benefit  from  more  epochs.  The  large  prediction
error with some of the elements suggests that more careful
selection of elements for the dataset could be beneficial
when using the generated data as a base for the models
used with real samples.

Table 3: Networks trained with batch size 2 or 4 perform consistently worse than networks trained with larger batch size.

Epochs Batch size First layer Second layer
Kernel

regularization
Bias

regularization
Minimum loss
during training

Final loss Test set MSE

15 2 32 64 Yes No 0.021380 0.021814 0.022002

5 2 512 256 Yes Yes 0.021901 0.021957 0.022210

30 2 64 512 Yes Yes 0.021889 0.027678 0.022454

25 2 128 512 Yes Yes 0.021906 0.027999 0.022508

20 2 128 512 Yes Yes 0.021904 0.025114 0.023366

25 2 128 256 Yes Yes 0.021844 0.023886 0.024065

5 2 256 512 Yes Yes 0.021934 0.021978 0.024501

Table 4: 20 of the predictions with the largest error for copper.
Error is calculated by taking an absolute of model prediction of

copper – copper label, first value in the element columns are label
values and second values are the predictions, both multiplied by 100.

Only elements included in the labels are shown.

Error Cu O P C Si

0.852328 10 / 95 0 / -8 10 / 4 80 / 49 0 / -2

0.806924 10 / 91 0 / -5 80 / 16 10 / 12 0 / -1

0.799032 15 / 95 0 / -8 30 / 6 55 / 42 0 / -2

0.758974 1 / 77 99 / 21 0 / -3 0 / 0 0 / 1

0.749208 2 / 77 98 / 21 0 / -3 0 / 0 0 / 1

0.745582 20 / 95 0 / -6 40 / 7 40 / 25 0 / -1

0.745178 20 / 95 0 /  -8 20 / 5 60 / 42 0 / -2

0.743142 20 / 94 0 /  -6 60 / 9 20 / 13 0 /-1

0.739396 3 / 77 97 / 21 0 / -3 0 / 0 0 / 1

0.729482 4 / 77 96 / 21 0 / -3 0 / 0 0 / 1

0.719343 5 / 77 95 / 21 0 / -3 0 / 0 0 / 1

0.709479 6  / 77 94 / 21 0 / -3 0 / 0 0 / 1

0.699579 7 / 77 93 / 21 0 / -3 0 / 0 0 / 1

0.689445 8 / 77 92 / 21 0 / -3 0 / 0 0 / 1

0.679562 9 / 77 91 / 21 0 / -3 0 / 0 0 / 1

0.669623 10 / 77 90 / 21 0 / -3 0 / 0 0 / 1

0.659569 11 / 77 89 / 21 0 / -3 0 / 0 0 / 1

0.649558 12 / 77 88 / 21 0 / -3 0 / 0 0 / 1

0.642394 10 / 74 80 / 23 0 / -7 0 / -2 10 / 45

0.639570 13 / 77 87 / 21 0 / -3 0 / 0 0 / 1

Figure 3: 5 of the best performing networks were trained 20 times each
to see how much the results vary. X-axis shows the ranking of the
networks from the table 2 tests. Blue dots were the best network in

single training run, but the green dots show better results in the tests
with multiple training runs.
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Table 5: 5 of lowest absolute errors for copper prediction with the
element label and prediction multiplied by 100. Only elements

included in the labels are shown.

Error Cu Mg Mn Tc Zn

1.00e-4 63 / 63.00 37 / 26.92 0 / -0.34 0 / -0.98 0 / -0.60

1.47e-4 64 / 63.99 0 / -0.61 36 / 28.13 0 / -2.04 0 / -1.58

2.92e-4 20 / 19.97 20 / 14.25 0 / 0.00 60 / 37.63 0 / -0.69

5.48e-4 61 / 61.05 0 / 0.00 0 / -0.11 0 / -0.99 39 / 29.56

7.54e-4 64 / 63.92 36 / 26.69 0 / -0.30 0 / -0.94 0 / -0.56
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