
Compressing Sentence Representation with
Maximum Coding Rate Reduction

Domagoj Ševerdija∗, Tomislav Prusina∗, Antonio Jovanović∗, Luka Borozan∗,
Jurica Maltar∗, Domagoj Matijević∗

∗ Department of Mathematics, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
dseverdi@mathos.hr

Abstract—In most natural language inference problems,
sentence representation is needed for semantic retrieval tasks.
In recent years, pre-trained large language models have been
quite effective for computing such representations. These
models produce high-dimensional sentence embeddings. An
evident performance gap between large and small models
exists in practice. Hence, due to space and time hardware
limitations, there is a need to attain comparable results when
using the smaller model, which is usually a distilled version of
the large language model. In this paper, we assess the model
distillation of the sentence representation model Sentence-
BERT by augmenting the pre-trained distilled model with
a projection layer additionally learned on the Maximum
Coding Rate Reduction (MCR2) objective, a novel approach
developed for general purpose manifold clustering.

We demonstrate that the new language model with re-
duced complexity and sentence embedding size can achieve
comparable results on semantic retrieval benchmarks.

Keywords—Sentence embeddings, model distillation, Maxi-
mum Coding Rate Reduction, semantic retrieval

I. INTRODUCTION

Dense vector representations of words, or word embed-
dings, form the backbone of most NLP applications and
can be constructed using context-free (see [1], [2], [3])
or contextualized methods (see [4], [5] for more details).
In practice, few NLP applications often benefit from
having sentence or document representations in addition
to word embeddings. In most cases, one can use the
weighted average (aka pooling) over some or all of the
word embeddings from a sentence or document. Although
it disregards word order while pooling, this approach
has shown to be reasonably performant [6]. Pre-trained
language models like BERT have shown success on many
NLP tasks through fine-tuning. Unfortunately, using con-
textualized word vectors from these models as a sentence
representation is significantly inferior in terms of semantic
textual similarity compared to approaches when one uses
non-contextualized word vectors, which are trained with a
much simpler model (see [7] for more details). Therefore,
more sophisticated methods were derived to find efficient
and performant universal sentence encoders. Reimers et
al. in [7] developed the Sentence-BERT model by fine-
tuning pre-trained BERT architecture on sentence pair
scoring tasks using a Siamese architecture to learn better
sentence representations, showing much improvement in
downstream NLP tasks. Their approach ended up with a
relatively large model size (hundreds of millions to billions

of parameters) and sentence embedding dimension 768, a
relatively large number for efficient search and retrieval
operations over databases. In this paper, we focus on
reducing the dimensionality of sentence embeddings up to
50%-70% while still achieving comparable results across
the board of NLP benchmarks. This opens up a possibility
of deploying AI models on smaller-scale computer systems
like embedded systems.

A. Related Work

Following the distributional hypothesis, Mikolov et al.
in [2] showed that computing dense vectors of lower
dimension for word embeddings give interesting mathe-
matical properties of words. Inspired by the same idea,
Kiros et al. [8] and Lee et al. [9] tried to derive a model
which predicts surrounding sentences. Sent2Vec [10] gen-
erates context-free sentence embeddings as averages of
word vectors and n-gram vectors (similar to FastText [11]
for words). Conneau et al. [12] computed contextualized
sentence embeddings using a BiLSTM Siamese network
that was fine-tuned on pairs of semantically similar sen-
tences. This approach was extended to fine-tuning pre-
trained language models like BERT in [7]. Recently,
Gao et al. [13] improved this approach by suggesting a
contrastive learning method and achieved state-of-the-art
results. Projecting sentence embeddings to lower dimen-
sions was motivated by projecting word vectors. In most
cases, PCA methods gave surprisingly good results and
even retrofitted the word vectors in such a way that it
made vectors more isotropic which had a good impact on
NLP benchmarks. Li et al. [14] showed that this anomaly
is also apparent in sentence vectors and gave a normalizing
flow method to retrofit such vectors. Recent work of [15]
introduced Maximum Coding Rate Reduction (MCR2),
a novel learning objective that enables for learning a
subspace representation given the clustering1. They also
demonstrated how to extend the approach to the problem
of unsupervised clustering.

B. Our contribution

We use a pre-trained sentence embedding model like
Sentence-BERT (SBERT) as a sentence encoder and train
a non-linear mapper atop the encoder using a Maxi-
mal Coding Rate Reduction as a training objective for

1The formal definition of MCR2 will be given in Section II.

MIPRO 2023/AIS 1269



learning discriminative low-dimensional structures that
preserve all the essential information encoded into the
high-dimensional data. This approach allows for more
robust training than standard training objectives like cross-
entropy and produces clusters in the embedding space. The
main contribution of our paper is a sentence embedding
compression technique that achieves comparable results
with smaller sentence embedding sizes on semantic NLP
benchmarks compared to the baseline sentence encoder.

The paper is organized as follows. In Section II we de-
scribe Maximum Rate Coding Reduction training objective
for computing subspace embedding space. Furthermore,
SBERT architecture is described as a sentence encoder fol-
lowed by a definition of the projection layer. In Section III
we experimentally evaluate our method and conclude with
a results discussion.

II. METHOD

For a given set of sentences S and for each sentence

(word1, word2, . . . , wordni
) ∈ S

our task is to construct a lower dimensional embedding
zi ∈ Rd that contains important semantic information
characteristic for that sentence. Our idea is to extend
SBERT and from it’s embedding compute a small projec-
tor to reduce the dimension, i.e. given the set of SBERT’s
embeddings Z ∈ Rd×n of the dataset S, find a Ẑ ∈ Rd̂×n

that retains semantic information extracted by SBERT.

A. Learning a subspace representation with MCR2

Using the idea from Li et al. [16] we aim to minimize
the angle between similar sentences and maximize the
entropy of the whole dataset. For two representations
ẑ1, ẑ2 ∈ Rd of two sentences we measure how similar
they are by cosine similarity

D (ẑ1, ẑ2) =
cos

(
ẑ⊤1 ẑ2

)
∥ẑ1∥2∥ẑ2∥2

.

For two sets Ẑ1, Ẑ2 ∈ Rd×b we define this function as

D(Ẑ1, Ẑ2) =
1

b

b∑
i=1

D (ẑ1,i, ẑ2,i) (1)

where ẑ1,i is the i-th element of Ẑ1 and ẑ2,i is the i-th
element of Ẑ2. Given pairs of similar sentences we want
them to have the D score as large as possible.

For a set of representations Ẑ ∈ Rd×n with n elements,
its entropy is defined as

Rε(Ẑ) =
1

2
log det

(
I +

d

nε2
ẐẐ⊤

)
(2)

for a given parameter ε and identity matrix I . This function
is approximately the Shannon coding rate function for
multivariate Gaussian distribution given average distortion
ε [17]. Maximizing (2) we maximize the volume of the
ball in which the embeddings are packed. The theory
behind this is well over the scope of this paper. It is

given in the paper by Ma et al. [18] where they explore
rate distortion, ε-ball packing and lossy encoding with
normally distributed data. By optimizing it in parallel with
(1) we try to distance each sentence from others, except
for the similar pairs that we try to keep close. Additionally,
given cluster assignments, we can measure the entropy of
each cluster with

Rε

(
Ẑ,Πk

)
=

nk

2n
log det

(
I +

d

nkε2
ẐΠkẐ

⊤
)

(3)

where Πk is a diagonal matrix with i-th entry being 1 if
the i-th sentence belongs to cluster k, otherwise 0, and
nk = tr (Πk), trace of matrix Πk, i.e. number of points in
this cluster. Combining functions (1), (2) and (3) into one
we get the MRC2 loss function defined with

L(Ẑ,Π) = −Rε(Ẑ) +
k∑

i=1

Rε(Ẑ,Πi)− λD(Ẑ1, Ẑ2) (4)

for some hyperparameter λ and pairs of similar sentences
respectively divided into two sets Ẑ1, Ẑ2. Π denoted in
L(Ẑ,Π) is the clustering of data given by the user or
learned by the architecture. The choice of λ depends
on how close we want to keep similar sentences in our
projection. For larger values of λ the network focuses on
collapsing similar pairs into the same vector which, if one
is not careful enough, can lead to collapsing all vectors
into one. For smaller values of λ the network has more
freedom to decide which vector embeddings to keep close.
This, on the other hand, can lead to an unwanted vector
representation that tends to maximally distance vectors
from each other. By minimizing (4) we

• maximize the volume of all embeddings, Rε(Ẑ),

• minimize the volume of each cluster,
k∑

i=1

Rε(Ẑ,Πi),

• maximize the cosine similarity of pairs of similar
sentences, λD(Ẑ1, Ẑ2).

The consequence of this is that after the minimization
we have an embedding in which different clusters are
orthogonal to each other (see [15] for more details), i.e.

i ̸= j =⇒ ẐiẐ
⊤
j = 0. (5)

B. Architecture

Our model receives as input a batch of sentences S,
encodes a sentence representations Z and outputs pro-
jected sentence representations Ẑ together with cluster
assignments Π for S. The overall architecture is shown
in Fig. 1.

1) Sentence encoder: BERT [4] and its variants has
set a new state-of-the art performance on sentence-pair
regression and classification tasks. Unfortunately, it re-
quires that both sentences are fed into network causing
a computation overhead which renders simple tasks like
finding similar sentence pairs in large datasets a costly
procedure. Therefore, SBERT [7] is a modification of the
BERT network which uses siamese network that is able to
derive semantically meaningful sentence representations.

1270 MIPRO 2023/AIS



The model consists of BERT as a pre-trained encoder,
a pooling layer that computes sentence representation as
an average of hidden states from the last layer of BERT.
SBERT is trained on the combination of the SNLI [19]
and MultiNLI [20] datasets.

2) Projection layer: Following Li et al. [16] we use
above mentioned SBERT as a backbone and two last linear
heads used to produce features and cluster logits. Features
given by the first head are additionally normalized to unit
sphere and the clusters are learned from the given pairs of
similar sentences. The whole architecture is described in
Fig. 1 where blue denotes the SBERT model and gray
denotes a feed forward neural network that we call a
projection layer. In this projection layer we have two
heads. The first head colored in red is a single linear layer
that collects information about the clusters and applies
Gumbel-Softmax [21]. The second head colored in green
is again a single linear layer that outputs features which
are in turn normalized to zero mean and unit variance. The
ELU activation function is used due to its good properties
[22].

III. EXPERIMENTS

We trained our model on StackExchange duplicate
questions as title/title pairs, used from CQADupStack [23].
The pipeline from Sentence Transformers2 for SBERT
and projection layer was used with default settings, 256
batch size and 50 epochs. The backbone all-mpnet-base-v2
and distilled model all-MiniLM-L6-v2 [24] as pre-trained
SBERT were frozen and the only trained part was the
projection layer. We refer to the former as MPNET and
the latter as MiniLM. Hyperparameter λ from equation (4)
was set to 2000 for dimensions 50 and 100, and to 4000
for all other dimensions. Our model is evaluated on several
downstream NLP tasks. First of all, we test our model
on those benchmarks that can include clustering, namely,
semantic retrieval tasks. We also show that computed
low-dimension sentence representations behave reasonably
well on other semantic benchmarks. The sizes of these
dimensions are motivated by experimental observation
of suitable word vector sizes from [25] and [14] in
which a connection between word vectors and sentence
embeddings is established. For downstream NLP tasks
such as standard textual similarity, sentiment analysis
and question-type classification tasks we use available
datasets from SentEval evaluation toolkit [26] for sentence
embeddings. See [26] and references therein for dataset
descriptions.

All our experiments were evaluated on AMD Ryzen
Threadripper 3990X 64-Core Processor @ 4.3GHz, Nvidia
GeForce RTX 3090 GPU, CUDA 11.6 with PyTorch
implementation 1.9.1.

A. Semantic Retrieval (SR) Task

The semantic retrieval (SR) task is to find all sentences
in the retrieval corpus that are semantically similar to

2https://github.com/UKPLab/sentence-transformers

the query sentence. The basic framework is to compute
sentence embeddings for the retrieval corpus and the query
sentence. The goal is to find closest points in retrieval
corpus embedding space to the query. Sometimes, to speed
up the process [27], one can cluster sentences in the
retrieval corpus embedding space into k clusters and use
query sentence to find the closest cluster of sentences. The
Quora Duplicate Question Dataset3 is used to evaluate our
method. This dataset consists of 500k sentences with over
400k annotated question pairs if they are duplicates or not.

B. Semantic Textual Similarity (STS) Task

One of the baseline benchmarks in natural language
processing is the semantic textual similarity (STS) task
that qualitatively assesses the semantic similarity between
two sentences (i.e., text snippets). Our model is evaluated
by computing cosine similarity between sentence pair
embeddings on standard STS tasks: STS 2012-2016 and
STS Benchmark available in SentEval. These datasets
were labeled between 0 and 5 scores indicating the se-
mantic relatedness of sentence pairs. Evaluation on these
datasets is conducted using Spearman rank correlation
which measures the correlation quality between calculated
and human labeled similarity. It is valued from -1 and 1
which will be high if the ranks of predicted similarities
and human labels are similar.

C. Sentence classification (SC) Task

Sentiment classification tasks involve assigning a score
for a sentiment of a snippet of text. It is formulated as a
classification of text into two or more sentiment classes,
namely negative, positive or neutral, or something in-
between. Datasets SST, SUBJ, CR, MR are typical bench-
marks for sentiment analysis. Moreover, another example
of a sentence classification task is to assign a question type
for a question, like in the TREC task. In the paraphrase
detection problem (like MRPC), one must classify if one
sentence is a paraphrase of the other. MPQA dataset is an
example of opinion classification task. The performance
metric for these benchmarks is given as accuracy. All these
datasets are available in SentEval toolkit.

IV. RESULTS

This section compares our method as a clustering
and compression algorithm, respectively. In Table I, we
compare how our clustering competes with k-means4

algorithm and report time performance (needed time for
encoding vectors, clustering, and total time) In the second
part, we test our compression against semantic relatedness
tasks. The results are reported in Tables I, II and III. Model
names in these tables are structured as follows: the sBERT
pretrained model name, the abrreviation MCR indicates
that MCR2 is used as a projection, the number followed is
a projection dimension, and optionally if k-means is used.

3https://www.kaggle.com/datasets/sambit7/first-quora-dataset
4implemented in scikit-learn Python package

MIPRO 2023/AIS 1271



SBERT

Projection Layer

ELU ELU

Gumbel-
Softmax

Normalization

Encoder

Projected
embeddings

of 

Cluster

assignments

for 

MCR

Embeddings
of 

Fig. 1: The overall architecture

TABLE I: For Semantic Retrieval (SR) tasks the all-mpnet-base-v2 SBERT model with MCR2 projection to dimension
200 achieves best accuracy without no additional time for clustering like in the same setup with k-means (denoted
with ∗). Clustering backbone sentence embeddings from SBERT with k-means (denoted with ∗∗) took almost an hour.

TIME
model accuracy encoding clustering total

all-mpnet-base-v2 + MCR50 0.562 00:04:15 - 00:04:15
all-mpnet-base-v2 + MCR100 0.545 00:04:15 - 00:04:15
all-mpnet-base-v2 + MCR200 0.645 00:04:16 - 00:04:16
all-mpnet-base-v2 + MCR300 0.632 00:04:17 - 00:04:17

all-mpnet-base-v2 + MCR50 + kmeans 0.671 00:04:15 00:07:08 00:11:23
all-mpnet-base-v2 + MCR100 + kmeans 0.650 00:04:15 00:07:22 00:11:37
all-mpnet-base-v2 + MCR200 + kmeans∗ 0.635 00:04:16 00:09:08 00:13:24
all-mpnet-base-v2 + MCR300 + kmeans 0.631 00:04:17 00:11:09 00:15:26
all-mpnet-base-v2 + kmeans (768)∗∗ 0.648 00:04:17 00:59:57 01:04:12
all-mpnet-base-v2 + MCR768 + kmeans 0.630 00:04:17 00:18:15 00:22:32

TABLE II: For Semantic Textual Similarity (STS) tasks backbone model achieves the best results (bolded) for Spearman rank
correlation coefficient on multiple benchmarks, although we observe comparable results of our method compared to
the backbone and distilled model all-MiniLM-L6-v2.

model STSb STS12 STS13 STS14 STS15 STS16

all-mpnet-base-v2 + MCR50 0.749 0.666 0.739 0.713 0.754 0.768
all-mpnet-base-v2 + MCR100 0.788 0.696 0.782 0.753 0.791 0.793
all-mpnet-base-v2 + MCR200 0.818 0.712 0.812 0.779 0.819 0.816
all-mpnet-base-v2 + MCR300 0.821 0.718 0.817 0.783 0.827 0.823
all-mpnet-base-v2 (768) 0.836 0.722 0.821 0.790 0.838 0.831

all-MiniLM-L6-v2 + MCR50 0.752 0.654 0.690 0.682 0.741 0.737
all-MiniLM-L6-v2 + MCR100 0.778 0.685 0.742 0.721 0.780 0.777
all-MiniLM-L6-v2 + MCR200 0.810 0.705 0.773 0.751 0.813 0.792
all-MiniLM-L6-v2 + MCR300 0.813 0.710 0.780 0.759 0.826 0.800
all-MiniLM-L6-v2 (384) 0.824 0.711 0.790 0.772 0.838 0.812

TABLE III: For Sentence Classification (SC) tasks backbone model achieves the best results (bolded) for accuracy on multiple
benchmarks, although we observe comparable results of our method compared to the backbone and distilled model.

model SST2 SST5 MR CR SUBJ MPQA TREC

all-mpnet-base-v2 + MCR50 75.45 36.43 69.67 63.76 79.16 68.84 51.6
all-mpnet-base-v2 + MCR100 82.54 39.19 75.85 63.76 81.86 68.77 60.0
all-mpnet-base-v2 + MCR200 86.55 42.76 80.62 72.77 88.28 82.27 71.0
all-mpnet-base-v2 + MCR300 87.59 44.66 82.33 79.71 90.73 85.76 79.8
all-mpnet-base-v2 (768) 88.74 49.00 85.05 86.84 93.97 89.32 94.0

all-MiniLM-L6-v2 + MCR50 65.95 31.76 61.61 63.76 79.19 68.77 41.0
all-MiniLM-L6-v2 + MCR100 72.27 33.94 66.38 63.82 83.97 76.58 64.0
all-MiniLM-L6-v2 + MCR200 77.54 37.10 70.06 69.17 86.87 81.83 69.2
all-MiniLM-L6-v2 + MCR300 79.35 39.50 72.95 75.07 88.47 84.13 72.0
all-MiniLM-L6-v2 (384) 81.44 42.99 75.98 80.56 91.80 87.38 90.0

The number given in parenthesis is the default embedding
size.

a) Results on SR tasks: We evaluate our projection
layer capacity of clustering against k-means clustering
in retrieval space of sentence embeddings. The query
sentence is assigned to a cluster of semantically related

sentences, and we compare whether the ground truth
duplicate belongs to that cluster, reported as an accuracy
score. In all our experiments, the number of clusters
was up to 128 (chosen empirically). In Table I and
Fig. 2, accuracy scores and overall time for computation
(i.e., encoding of sentence embeddings and clustering)

1272 MIPRO 2023/AIS



Fig. 2: Performance comparison on SR task

Fig. 3: Relative error in STS and SC benchmarks

depending on embedding size and type of model (MCR2

with implicit clustering or k-means) are presented. Our
method is comparable to k-means algorithm down to a
certain dimension. On dimensions less than 200 k-means
performed slightly better due to the fact that we did not
put much effort into finding suitable λ values (suggested
values of λ are from [16]). Our method computes clusters
during inference which is much faster comparing to using
k-means. Also worth noting, our projection layer used as
a non-linear mapper in the original space (i.e., without any
dimensionality reduction) retrofitted the sentence embed-
dings, enabling faster convergence of k-means algorithm
(shown in the last row of Table I).

b) Results on STS tasks: Table II presents results for
baseline (MPNET) and distilled model (MiniLM) coupled
with the projection layer (MCR) with various embedding
sizes. As one can see, a relative error of up to 13%
in Spearman rank correlation is incurred if the sentence
embedding dimension is as low as 6% of the original
sentence embedding size. We conclude that due to the
projection layer’s ability to preserve cosine distance in
lower-dimensional space, the neighborhood of points is

preserved, resulting in less performance degradation. This
trend is visible on all STS benchmarks with both models.
The relative error in Spearman rank correlation coefficient
with respect to projection dimension is shown in the first
row of Fig. 3 for both the baseline and distilled model.

c) Results on SC tasks: As seen in Table III, it is
observable that per-sentence classification problems like
SST2 and MRPC have less performance degradation than
per-token sentence classification problems like MPQA and
per-sentence multi-classification problems like TREC, re-
spectively. This is because fine-grained semantics for such
tasks could not be preserved as much during projection.
In the worst case, the performance degradation went up to
45% for the baseline model and up to 60% for the distilled
model, respectively, at 6% of the original embedding size.
The relative error in accuracy with respect to projected
dimension is shown in the second row of Fig. 3 for both
the baseline and distilled model.

V. CONCLUSION

In this paper, we demonstrated how MCR2 technique
could be used to obtain lower-dimension embeddings of

MIPRO 2023/AIS 1273



sentence representation for fast semantic retrieval tasks
up to 70% of its original size. Also, we argued that
these embeddings are comparable with SBERT results on
standard semantic NLP benchmarks. Due to the projection
layer’s ability to cluster data, we were able to cluster our
sentences without any extra time cost and further reduce
the representation of sentences to a reasonable dimension
size without significant loss of the important semantic
features. We hope our approach gives new insights for
possible applications in deploying AI models in smaller-
scale computer systems.

REFERENCES

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” J. Mach. Learn. Res., vol. 3, no.
null, p. 1137–1155, mar 2003.

[2] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” 2013. [Online]. Available: https://arxiv.org/abs/
1310.4546

[3] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors
for word representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct.
2014, pp. 1532–1543. [Online]. Available: https://aclanthology.org/
D14-1162

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online].
Available: https://aclanthology.org/N19-1423

[5] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, Jun. 2018, pp. 2227–
2237. [Online]. Available: https://aclanthology.org/N18-1202

[6] H. Aldarmaki and M. Diab, “Evaluation of unsupervised
compositional representations,” 2018. [Online]. Available: https:
//arxiv.org/abs/1806.04713

[7] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks,” Aug. 2019,
arXiv:1908.10084 [cs]. [Online]. Available: http://arxiv.org/abs/
1908.10084

[8] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Ur-
tasun, and S. Fidler, “Skip-thought vectors,” in Proceedings of the
28th International Conference on Neural Information Processing
Systems - Volume 2, ser. NIPS’15. Cambridge, MA, USA: MIT
Press, 2015, p. 3294–3302.

[9] L. Logeswaran and H. Lee, “An efficient framework for learning
sentence representations,” CoRR, vol. abs/1803.02893, 2018.
[Online]. Available: http://arxiv.org/abs/1803.02893

[10] M. Pagliardini, P. Gupta, and M. Jaggi, “Unsupervised learning
of sentence embeddings using compositional n-gram features,”
in Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). Association for
Computational Linguistics, 2018.

[11] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enrich-
ing word vectors with subword information,” arXiv preprint
arXiv:1607.04606, 2016.

[12] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes,
“Supervised learning of universal sentence representations from
natural language inference data,” in Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark: Association for Computational Linguistics,

Sep. 2017, pp. 670–680. [Online]. Available: https://aclanthology.
org/D17-1070

[13] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple contrastive
learning of sentence embeddings,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 6894–6910. [Online].
Available: https://aclanthology.org/2021.emnlp-main.552

[14] B. Li, H. Zhou, J. He, M. Wang, Y. Yang, and L. Li, “On
the sentence embeddings from pre-trained language models,” in
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Online: Association for
Computational Linguistics, Nov. 2020, pp. 9119–9130. [Online].
Available: https://aclanthology.org/2020.emnlp-main.733

[15] Y. Yu, K. H. R. Chan, C. You, C. Song, and Y. Ma, “Learning
Diverse and Discriminative Representations via the Principle of
Maximal Coding Rate Reduction,” Jun. 2020, arXiv:2006.08558
[cs, math, stat]. [Online]. Available: http://arxiv.org/abs/2006.08558

[16] Z. Li, Y. Chen, Y. LeCun, and F. T. Sommer, “Neural Manifold
Clustering and Embedding,” Jan. 2022, arXiv:2201.10000 [cs].
[Online]. Available: http://arxiv.org/abs/2201.10000

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wi-
ley Series in Telecommunications and Signal Processing). USA:
Wiley-Interscience, 2006.

[18] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of
multivariate mixed data via lossy data coding and compression,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 9, pp. 1546–1562, 2007.

[19] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A
large annotated corpus for learning natural language inference,”
in Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Lisbon, Portugal: Association
for Computational Linguistics, Sep. 2015, pp. 632–642. [Online].
Available: https://aclanthology.org/D15-1075

[20] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage
challenge corpus for sentence understanding through inference,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, Jun. 2018, pp. 1112–
1122. [Online]. Available: https://aclanthology.org/N18-1101

[21] I. A. M. Huijben, W. Kool, M. B. Paulus, and R. J. G. van
Sloun, “A review of the gumbel-max trick and its extensions
for discrete stochasticity in machine learning,” 2021. [Online].
Available: https://arxiv.org/abs/2110.01515

[22] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” 2015.
[Online]. Available: https://arxiv.org/abs/1511.07289

[23] D. Hoogeveen, K. M. Verspoor, and T. Baldwin, “Cqadupstack:
A benchmark data set for community question-answering
research,” in Proceedings of the 20th Australasian Document
Computing Symposium (ADCS), ser. ADCS ’15. New York,
NY, USA: ACM, 2015, pp. 3:1–3:8. [Online]. Available:
http://doi.acm.org/10.1145/2838931.2838934

[24] N. Reimers and I. Gurevych, “Making monolingual
sentence embeddings multilingual using knowledge distillation,”
in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. Association for
Computational Linguistics, 11 2020. [Online]. Available:
https://arxiv.org/abs/2004.09813

[25] K. Patel and P. Bhattacharyya, “Towards lower bounds on number
of dimensions for word embeddings,” in Proceedings of the Eighth
International Joint Conference on Natural Language Processing
(Volume 2: Short Papers). Taipei, Taiwan: Asian Federation of
Natural Language Processing, Nov. 2017, pp. 31–36. [Online].
Available: https://aclanthology.org/I17-2006

[26] A. Conneau and D. Kiela, “SentEval: An evaluation toolkit
for universal sentence representations,” in Proceedings of the
Eleventh International Conference on Language Resources and
Evaluation (LREC 2018). Miyazaki, Japan: European Language
Resources Association (ELRA), May 2018. [Online]. Available:
https://aclanthology.org/L18-1269

[27] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp.
535–547, 2019.

1274 MIPRO 2023/AIS




