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Abstract—Vignetting is a phenomenon characterized by
a decrease in illumination towards the edges of an image.
This effect is typically represented by a radially symmetrical
model, however, this paper aims to demonstrate a non-radial
model of vignetting and estimate its shape. To accomplish this,
a synthetic image was created and the angular vignetting
shape has been modeled as a sum of harmonics. The
magnitudes and amplitudes of these harmonics were obtained
and used to construct the desired angular vignetting shape.
Once the synthetic image with the modeled vignetting shape
and added noise was created, it was used as input into
a function for vignetting estimation. Also, the inputs have
been a fixed vignetting center and different initial values
of harmonics’ magnitudes and phases. With that inputs,
despite the level of the noise, we have successfully estimated
vignetting function by non-linear optimization. The function
has attempted to determine the original harmonics’ used to
create the vignetting angular shape. When the vignetting
model is calculated, we removed it in order to get a
homogeneous image. While it may be difficult to obtain the
exact original values of the harmonics’, the shape can be
estimated with a high level of accuracy. The paper shows
that highly accurate models can be estimated for a lower
number of angular harmonics, with a residual gain error
standard deviation of less than 0.03%. Even in the presence
of 5dB noise in the images, the gain error standard deviation
remains below 3%, as long as proper parameter initialization
is performed prior to optimization.

Keywords—vignetting, non-radial model, vignetting correc-
tion, optimization

I. INTRODUCTION

Vignetting is a photometric phenomenon in which the
brightness of an image decreases towards its periphery,
relative to its center. The cause of vignetting can be due to
limitations in camera and lens design, such as the aperture
value, or the geometric distortion of oblique light beams. It
can introduce inaccuracies in computer vision algorithms
that rely on precise intensity data. Vignetting correction
techniques range from commercial to non-commercial
solutions, but the majority assume radial distribution [1],
[2], leading to potential inaccuracies if the vignetting is
actually non-radial. The degree of vignetting is influenced
by factors such as lens, aperture, and exposure, making
automatic correction challenging [3].

The characteristics of the lens and its aperture determine
the degree of vignetting. Natural vignetting occurs due to
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the cosine fourth law of illumination fall-off, which states
the decrease in light is proportional to the fourth power
of the cosine of the angle between peripheral lens rays
and the optical axis. The aperture, or diaphragm, regulates
the amount of light reaching the sensor and controls the
f-stop, a logarithmic measure of the ratio of maximum to
minimum intensity [4].

Vignetting has four different types: optical vignetting is a
lens-based phenomenon of gradual darkening in images that
are more prominent at wider apertures. It can be corrected
by reducing the aperture size [5]. Natural vignetting is
caused by the light reaching the sensor at different angles,
particularly with wide-angle lenses, and is a result of the
cosine fourth law of light fall-off [6]. It cannot be corrected
with aperture adjustment but can be compensated through
filters or image processing. Mechanical vignetting results
from physical obstruction of light by filter rings, hoods, or
other objects and is less noticeable with wider apertures and
zoom lenses. Pixel vignetting is due to lower illumination
of corner pixels compared to center pixels, which is a result
of the flat construction of image sensors and the angle of
the light impinging on the sensor. It can be reduced by
using micro-lenses on the sensor and perpendicular angles,
though it cannot be eliminated entirely [7], [8].

The vignetting can be reduced using radial graduated
neutral density filters or by post-processing methods. Some
cameras have a built-in vignetting correction for JPEG
images, but not for RAW images. Image processing can
be used to enhance images and correct vignetting, but
various lens-related factors such as angle of incidence,
chief ray angle (CRA) misalignment, and natural vignetting
must be considered. Correction methods for RAW images
require specialized software. Image processing methods
can also enhance the quality of the image. Most causes of
vignetting can be reduced by decreasing the lens aperture
by 2 f-stops, or through the use of a telecentric lens
that produces uniform illumination of the image plane.
Mechanical vignetting can be reduced by using longer
focal lengths, using a telecentric lens, or using flat field
correction.

Any optical system consisting of multiple lenses can
cause non-radial vignetting. This occurs because lenses
typically have around 20 elements, and their misalignment
with the optical axis can lead to non-radial vignetting.
Specifically, due to the mechanical and lens imperfections
and for lenses with variable focus. Even high-end lenses
may not have a perfect internal construction, which can

1228 MIPRO 2023/AIS



lead to this phenomenon. For example, there is one lens
that has 17 elements divided into 12 groups [9], it is a
very high-rated lens, but can still cause this phenomenon.

Non-radial vignetting can also occur in scenarios where
the illumination is not sufficiently homogenous.

II. RELATED WORKS

Vignetting correction methods aim to eliminate the
darkening of image corners caused by the vignette effect.
These techniques can be broadly divided into two groups:
those that use a reference image and those that do not. The
former group relies on a reference image to determine a
vignetting function, which is obtained by approximating
the function with parametric models.

Physically-based models within this group require de-
tailed knowledge of camera lens parameters and can be
challenging to implement [10], [11]. Single-image [12],
[13], [14] and image sequence methods [15], [16], [17],
[18] within this group estimate vignetting by minimizing
an objective function with the assumption that vignetting
is a radial function. These methods often require additional
image processing techniques, such as image segmentation
[1].

The effectiveness of methods that use a single image to
estimate a vignetting function depends on the precision of
localization of corresponding pixels and usually use addi-
tional image processing methods, eg. image segmentation.
Most single-image correction methods do not require prior
knowledge of the vignette model or optical system and
can be achieved through: radial and tangential gradient
analysis [19], Gaussian quadric fitting [20], and estimation
of correction factors at each pixel position [21]. Some of
these methods also take into consideration pupil aberration
and the symmetric distribution of the radial gradient [22],
[23]. In most cases, all compared images require an
acquisition in the same scene conditions and any change in
the scene may influence the outcome vignetting function.
The effectiveness of these methods strongly depends on
the uniformity of scene illumination.

In the image sequence method, they use a set of not
entirely overlapping images of the same reference scene
to calculate vignetting function. It is done by minimizing
the objective function which depends on the differences
between values of corresponding pixels in different images,
which represent the same scene point. Multiple-image
correction techniques may require prior knowledge of the
optical system or vignetting model and use information
from multiple images to estimate a vignetting model. These
methods can be model-based or otherwise utilize techniques
such as wavelet decomposition and hyperbolic function
approximation

Methods that do not use reference images are based
on flat-field correction and assume a reference vignetting
image that represents a uniformly illuminated surface.
There can be used different types of vignetting models,
such as 2D polynomial [15], [24], [25], exponential 2D
polynomial [24], smooth non-iterative local polynomial

[26], radial polynomial [27], hyperbolic cosine [28], and
Gaussian function [29]. Most models represent a radial
model, but there are only few methods that cover non-radial
models, and are easy to use.

Type of Methods Reference
With reference image

Physically based model
Natural, optical, pixel [10], [11]

Single image: [12] - [14]
Radial and tangential gradient analysis [19]
Gaussian quadric fitting [20]
Estimation of correction factors [21],
Non-radial methods [3], [30], [31]

Image mosaic:
Model-based [17] , [18]
Wavelet decomposition [2]
Hyperbolic function approximation [15]
Without reference image

Flat field:
2D polynomial [24], [25]
Exponential 2D polynomial [24]
Smooth non-iterative local polynomial [26]
Radial polynomial [27]
Hyperbolic function [28]
Gaussian function [29]

TABLE I: Type of methods for vignetting correction

A. Non-radial vignetting correction methods

Non-radial vignetting correction methods are mostly
done as single-image vignetting correction. There are a
few methods that deal with this type of vignetting.

Non-radial vignetting correction described in [3] is based
on a local parabolic model of vignetting. This algorithm
includes compensation for non-uniform scene luminance.
The method shows better results on artificial images than
on natural ones. The usual quality metrics for luminance
compensation accuracy are MAE and RMSE measures.

Another approach, Deformable Radial Polynomial (DRP)
model combines the simplicity of the commonly used
radial polynomial(RP) model with the universality of
more complex methods. This model uses a distance
transformation and minimization method to match the
radial vignetting model to the non-radial vignetting of the
analyzed lens-camera system and can give better results
than the RP model [30].

An alternative approach of local fitting of the vignetting
model to the measure data [31] is based on the local
polynomial model in which the order of the polynomial
is a parameter of the model and allows to better fit the
model to the real vignetting of camera-lens systems.

Our preliminary results are not yet comparable to the
results obtained by existing methods. Further research and
optimization are necessary to fully evaluate the potential
of the proposed approach.

III. PROPOSED NON-RADIAL MODEL OF VIGNETTING

Radial vignetting shown in Figure 1 is the most widely
recognized form of vignetting and has been well studied,
leading to the development of numerous correction algo-
rithms that take its radial shape into account. However,
non-radial vignetting, shown in Figure 2, is a more complex
form of vignetting that is more difficult to quantify and
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Fig. 1: Radial model of vignetting [32]

correct. This is due to the lack of a uniform and systematic
pattern in the reduction of brightness or saturation across
the image plane. Non-radial vignetting correction methods
are still an active area of research in the field of image
processing.

Fig. 2: Example of a non-radial model of vignetting

The general form of vignetting can be expressed mathe-
matically as a function of the normalized radius, as shown
in equation 1.

V = f(R′) (1)

In the proposed model, in the equation 2, the normalized
radius is defined by multiplying the actual radius by an
angular dependent factor k(θ) that accounts for the desired
non-radial shape of the vignetting.

R′ =
R

maxR
· k(θ) (2)

The factor k(θ) is a function of the polar angle, θ,
and allows for the creation of a non-uniform reduction
of image brightness or saturation across the image plane.
The non-radial form of vignetting can be used to model
more complex forms of vignetting beyond the traditional
radial model, allowing for greater control over the shape
and intensity of the vignetting effect.

For a radially symmetric vignetting model, the factor
k(θ) is a constant, meaning that the reduction in image
brightness or saturation is uniform in all directions. In
contrast, for a non-radially symmetric vignetting model,
the factor k(θ) varies as a function of the polar angle, θ,
which allows for the creation of non-uniform vignetting
patterns that fall off at different rates in different directions.
The larger the value of k(θ), the more rapid the reduction
of brightness or saturation in that direction. By modeling
vignetting in this manner, it is possible to create more
complex and nuanced vignetting effects.

k(θ) = 1+
Nh∑
n=1

(mai · cos(arctan(
y − y0
x− x0

) · i+ ani) (3)

The proposed angular term k(θ) of the non-radial
vignetting model is determined as a simple sum of the
harmonics, as expressed in equation 3 where (x, y) is
the pixel position in the frame, (x0, y0) is the center
of the shifted vignetting model, and R is the euclidean
distance of these two points. Such a definition ensures
natural periodicity with the period of 2π, thus achieving
the angular smoothness of the model. In this equation, mai
represents the magnitude and ani represents the angle of
each harmonic term. The sum of these harmonics results
in the final expression for angular dependent normalized
radius R’. The proposed approach allows for a flexible
parametric representation of the vignetting effect and the
ability to control the shape and intensity of the vignetting
by adjusting the magnitude and angle of each harmonic
term. By combining multiple harmonics, it is possible to
create complex and non-uniform vignetting patterns that
cannot be represented by simple radial models.

IV. PROPOSED METHOD OF NON-RADIAL VIGNETTING
CORRECTION

A. Synthetic image of non-radial model

Since such a model has not been studied in the literature
so far, before comparing it to other models and before
its validation on real-world images it was necessary to
establish the feasibility of model estimation from synthetic
images with given model parameters. This represents the
main research objective presented in this paper.

To validate the vignetting correction function, a synthetic
image, shown in Figure 3 was created as follows: 1) a ho-
mogeneous gray image was established as the background
to simulate the uniform part of the night sky glow, 2) white
pixels simulating stars were added to the constant value
of the image, 3) the described non-radial vignetting model
was then applied to the image, and 4) Poisson noise was
applied to the image to simulate the realistic noise present
in images captured by cameras. The presence of noise
can make it difficult to accurately estimate the form of
vignetting, potentially leading to discrepancies between the
estimated and actual vignetting models, especially when
the sensor’s response to sky glow intensity is of a similar
magnitude to the expected noise level. Therefore, it is
essential to consider the impact of noise when estimating
the vignetting correction, as it can further exacerbate the
vignetting correction problem.

B. Function for vignetting correction

The function operates based on the principle of pixel
sensing and attempts to identify the shape of vignetting
by searching for areas where the function assumes the
same intensity values. In simple radial models, search is
performed along contour lines of equal intensity which are
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Fig. 3: Example of synthetic image with non-radial
vignetting, Nh = 9

represented by concentric circles. Based on the proposed
angular model from equation 3 with assumed harmonics
values, the contour lines become non-circular as shown in
Figure 4 for the same example from Figure 3.

Fig. 4: Contour lines of non-circular model, Nh = 9

The radial cut of the normalized vignetting function
f(R’) is then determined by averaging across all angles
θ. Introducing such angular dependent scaling of radial
distance to the vignetting model’s center is equivalent to the
image frame spatial distortion in which the vignetting of the
original undistorted image would be a simple radial model
of the normalized radius R’. The original and distorted
frames are shown in Figure 5.

Ideally, the vignetting estimation function shall result
with the optimal set of parameters: model center (x0,y0), an-
gular model harmonics (mai and ani), and the normalized
radial cut function V(R’), using the non-linear optimization
for the chosen loss function. Since this is a non-trivial
problem we have experimented with a different kind of
parameter initialization which affect the final solution.

The inputs to the optimization function are thus initial
magnitudes and phases of harmonics and the vignetting
center point which is either assumed as a free optimization
variable as well or is fixed to the actual known position
to simplify the problem. The radial cut function is also
modeled as a harmonic function of the normalized radius
R’ with the chosen number of radial harmonics (20 in
all our experiments). The parameters of this averaged
radial harmonic model are always determined as an optimal
solution for the current parameters of the assumed angular
vignetting model k(θ).

In this paper, we will present the estimation results
for the fixed center position in order to validate the
possibility of estimating an accurate angular model for

such a simplified case.

Fig. 5: Distorted shape of the frame due to angular
dependent radial scaling, Nh=2

The estimation process is inherently nonlinear, rendering
the task of identifying the optimal solution intractable
through analytical methods. A reliable estimate of the
model will be obtained if the application of the reciprocal
model to the image results in a uniform brightness across
the entire frame, with minimal variations. To minimize
these variations in consideration of the model’s parameters,
numerical optimization was performed in Matlab utiliz-
ing the fminunc function, as well as a similar function
developed within our department.

V. EXPERIMENTS AND RESULTS

Experimental verification of vignetting estimation and
compensation was done on the synthetic image (300x400
pix) with x0 = 200, y0 = 150. In order to evaluate our
estimation methodology, the number of harmonics of the
angular model was varied from the set Nh = {1, 2, 9}, so
we can validate the estimation function behavior for a small
number of harmonics, as well as a larger value. To verify
the robustness of the final estimation result to the proper
parameter initialization, optimization was initialized with
the scaled values of the ideal harmonics magnitudes and
phases which were used for the image synthesis. The same
scalar scaling factor α was used for all initial parameters,
which was chosen from the set α = {1, 0.7, 0.4, 0.2, 0,
-1}. Every experiment was performed for the noise-free
synthetic image as well as for the Poisson corrupted image
with an SNR of 20dB and 5 dB. The normalized radial
cut function of the synthetic image was chosen as V(R’)
= tan(π4 - π

8
R′

maxR′ ), such that V(0) = 1, and V(maxR’) =
0.4142.

For the trivial scale factor α = 1, initial optimization
parameters were identical to the parameter set used for
synthesis which truly minimizes the objective function so
this case represents the baseline for comparison.

A. Evaluation metrics

The success of the vignetting estimation and compen-
sation was measured by two factors: standard deviation
(std) of the residual gain variation to the unit value and the
percentage of valid pixels (valid) whose gain variation is
within +/-3std (to account for inevitable outliers). The
robust estimate of the std was used to establish the
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validity threshold to account for heavy-tailed gain error
distribution. Therefore, both values must be considered
when interpreting and comparing the experimental results.

B. Experiments with noise-free images

The estimation results of compensating noise-free images
are presented in Figures 6, 7, and 8 for scaling factor α =
0.4. The correction is demonstrated to be very successful
with minimal deviation from the unit value of less than 1
permille relative gain variation for Nh = 1. Residual radial
fringes are caused by the mismatch between the radial cut
model used for the synthesis (tan) and the non-parametric
harmonic model which is used in the estimation to account
for the arbitrary radial cut shape. The angular model error
can be observed for Nh = 9 as angular zoning combined
with radial fringes, but the error is still within 1% of the
ideal flatness.

The numerical simulation results for all three choices
of Nh are presented in Tables II to IV. It can be observed
from Table II that for an angular model with a single
harmonic, the true model parameters (ma1, an1) can be
easily resolved for all positive values of scaling factor α. In
table III, for a model with 2 harmonics the true parameter
values are restored for scaling factor α ≥ 0.7, while for the
most complex model with Nh = 9, most of the parameters
are restored to the true value for scaling factor α ≥ 0.7
(Table IV). However, for smaller or negative scaling of the
initial parameters, in all 3 cases, the minimization function
becomes trapped in an alternative minimum and approaches
its closest values which are not the global minimum.

The reconstruction accuracy of the compensated syn-
thetic image is also presented in Tables II, III and IV
in the last three rows through the percentage of valid
pixels and corresponding standard deviation of the residual
gain variation. The last row displays the required number
of optimization iterations, showing that a more complex
model as well as poor initialization increases its value.
Similar behavior is observed for the compensation accuracy
demonstrating the importance of appropriate initialization.

Fig. 6: Residual gain variations for noise-free image,
Nh=1, α = 0.4

C. Testing images with SNR = 20dB

The estimation results of the vignetting correction in the
image with the signal-to-noise ratio (SNR) of 20 dB is
illustrated in Figure 9 for α = 0.7. The compensation error

Fig. 7: Residual gain variations for noise-free image,
Nh=2, α = 0.4

Fig. 8: Residual gain variations for noise-free image,
Nh=9, α = 0.4

param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0799 0.0799 0.0798 0.0798 0.0798 0.0791 -0.0798
an1 -0.0666 -0.0666 -0.0680 -0.0676 -0.0687 -0.0689 0.4330

valid % - 99.200 99.099 99.153 99.151 99.114 99.164
std % - 0.0306 0.0328 0.0316 0.0350 0.0357 0.0306

Iter num - 4 32 48 43 63 77

TABLE II: Values of the estimated parameters for scaled
initialization for noise-less image, Nh = 1

param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0986 0.0986 0.0690 0.1007 0.0795 0.1023 -0.2977
ma2 0.1819 0.1819 0.1281 0.1971 0.2020 0.1680 -0.0327
an1 0.1011 0.1011 0.0710 0.0567 0.0448 0.1433 -0.1894
an2 -0.0703 -0.0703 -0.0503 -0.0728 -0.0779 -0.0672 0.2558

valid % - 99.095 98.360 80.483 80.713 80.443 72.894
std % - 0.0297 2.0874 0.1503 0.1690 0.1390 1.1579

Iter num - 6 18 86 55 146 64

TABLE III: Values of the estimated parameters for scaled
initialization for noise-less image, Nh = 2

param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0466 0.0466 0.0340 0.0340 -0.0431 -0.0460 -0.0111
ma2 0.1014 0.1014 0.0945 0.0641 0.0408 -0.0200 -0.0287
ma3 0.0360 0.0360 0.0164 -0.0141 -0.0067 0.0510 0.0029
ma4 0.1408 0.1408 0.1318 0.1154 0.1107 0.1673 -0.0404
ma5 0.0895 0.0895 0.0700 0.0572 0.0046 -0.0206 -0.1819
ma6 0.0176 0.0176 -0.0098 -0.0951 -0.0234 -0.0570 0.0644
ma7 0.1566 0.1566 0.1570 0.1288 0.1703 0.1584 -0.0029
ma8 0.0218 0.0218 0.0066 0.0425 0.0326 -0.0230 0.0970
ma9 0.0366 0.0366 0.0524 0.0369 0.0652 0.0300 0.0191
an1 0.4492 0.4492 0.3070 0.1696 0.1059 0.0706 -0.4483
an2 0.2998 0.2998 0.2399 0.1314 0.1048 -0.0430 -0.2563
an3 -0.4346 -0.4346 -0.3194 -0.1710 -0.0987 -0.1294 0.4460
an4 -0.0787 -0.0787 -0.0655 -0.0658 0.0682 0.0265 0.1312
an5 -0.2185 -0.2185 -0.1720 -0.1298 -0.0842 0.0072 0.1818
an6 -0.4015 -0.4015 -0.2829 -0.1572 -0.0938 -0.0136 0.3269
an7 -0.0884 -0.0884 -0.0911 -0.0400 -0.0771 -0.1028 0.1899
an8 0.4547 0.4547 0.3243 0.1795 0.1059 0.0196 -0.4922
an9 -0.0004 -0.0004 0.0294 0.0423 0.0244 -0.0105 -0.0235

valid % - 98.301 80.421 76.681 68.514 69.574 69.040
std % - 0.0388 0.2673 0.6437 0.2115 0.1508 0.2545

Iter num - 20 360 303 451 534 565

TABLE IV: Values of the estimated parameters for scaled
initialization for noise-less image, Nh = 9

is shown for Nh = 2, but similar results were obtained for
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Nh = 1 and Nh = 9 as well. The correction is successful
with the maximal deviation from the unit value of slightly
above 1% gain error. Detailed results presented in Tables
V to VII indicate that the correction is slightly worse than
for the noise-free images. The percentage of compensated
pixels drops rapidly for α ≤ 0.7, which gives even higher
significance to proper parameter initialization. We can
also observe that the higher number of angular harmonics
requires a significantly larger number of iterations (e.g. Nh
= 9).

Fig. 9: Residual gain variations for image with SNR =
20dB, Nh=2, α = 0.7

param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0799 0.0806 0.0559 0.0319 0.0169 0.0630 -0.0790
an1 -0.0666 -0.0678 -0.0466 -0.0266 -0.0129 -0.0006 0.0683

valid % - 97.356 99.962 99.940 99.824 99.838 98.691
std % - 0.2433 0.6300 1.0944 1.3533 0.7765 2.0206

Iter num - 9 4 4 12 21 17

TABLE V: Values of the estimated parameters for scaled
initialization for image with SNR = 20dB, Nh = 1

param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0986 0.1014 0.0704 0.0030 0.0262 0.0125 -0.1579
ma2 0.1819 0.1828 0.1632 0.1899 0.0937 0.0628 -0.1050
an1 0.1011 0.1005 0.0915 0.0650 0.0374 0.0002 -0.1451
an2 -0.0703 -0.0677 -0.0995 -0.0596 0.0076 -0.0009 0.2053

valid % - 99.164 99.319 100.000 99.946 99.988 100.000
std % - 0.1641 0.7355 1.4962 3.8717 4.2820 2.6032

Iter num - 27 37 47 22 24 44

TABLE VI: Values of the estimated parameters for scaled
initialization for image with SNR = 20dB, Nh = 2

param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0466 0.0472 0.0322 -0.0066 0.0154 0.0191 -0.0974
ma2 0.1014 0.1008 0.0822 0.0153 0.0284 0.0567 -0.0727
ma3 0.0360 0.0366 0.0286 -0.0184 -0.0146 0.0080 0.0617
ma4 0.1408 0.1402 0.1103 0.0535 0.0548 0.0839 -0.0788
ma5 0.0895 0.0894 0.0597 0.0686 0.0184 -0.0342 -0.1614
ma6 0.0176 0.0175 -0.0049 -0.0446 -0.0224 -0.0768 0.0536
ma7 0.1566 0.1562 0.1333 0.0207 0.0397 0.0992 -0.0030
ma8 0.0218 0.0218 0.0563 0.0423 -0.0009 -0.0781 0.1066
ma9 0.0366 0.0370 0.0470 0.0611 0.0372 0.0529 0.0238
an1 0.4492 0.4490 0.3256 0.1566 0.0939 0.0032 -0.4687
an2 0.2998 0.2996 0.2110 0.1821 0.0432 0.0210 -0.3730
an3 -0.4346 -0.4345 -0.3093 -0.1735 -0.0892 0.0075 0.4193
an4 -0.0787 -0.0777 -0.0630 -0.0323 -0.0222 0.0000 0.0955
an5 -0.2185 -0.2181 -0.1700 -0.0872 -0.0577 0.0335 0.1729
an6 -0.4015 -0.4015 -0.2704 -0.1629 -0.0944 -0.0348 0.3874
an7 -0.0884 -0.0882 -0.0652 -0.0586 -0.0371 -0.0269 0.0878
an8 0.4547 0.4552 0.3213 0.2018 0.0806 0.0102 -0.4813
an9 -0.0004 -0.0004 0.0075 -0.0063 -0.0041 0.0115 -0.0391

valid % - 99.141 91.550 98.643 99.827 97.293 95.299
std % - 0.2548 0.9074 3.2596 4.1844 3.0358 1.7616

Iter num - 81 105 111 85 184 295

TABLE VII: Values of the estimated parameters for scaled
initialization for image with SNR = 20dB, Nh = 9

D. Correction of low SNR images

For the same initial scaling of α = 0.7, the optimization
result of the vignetting correction of the low SNR image
(SNR = 5 dB) is illustrated in Figure 10 for Nh = 2. The
values shown in Tables VIII to X demonstrate that the
results are worse than those obtained from images with
a higher SNR, or those of the noise-free images, yet the
vignetting function can still be approximately reconstructed
with magnitudes and angles affected by the high noise level.
It is observed that the smaller the number of harmonics, the
easier it is to attain desired results, as the model depends
on fewer free parameters. Additionally, it can be seen that
even for such a high noise level, the percentage of the
correctly compensated pixels is in the range of 97-99%
with the residual std of around 2% gain error for α ≥ 0.7.
The error clearly increases with poorer initialization.

Fig. 10: Residual gain variations for image with SNR =
5dB, Nh=2, α = 0.7

param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0799 0.0799 0.0559 0.0329 0.0160 0.0023 -0.0800
an1 -0.0666 -0.0666 -0.0466 -0.0264 -0.0133 0.0004 0.0751

valid % - 96.567 97.386 97.969 98.568 99.030 99.596
std % - 1.2126 1.3729 1.6930 2.0619 2.2066 2.4473

Iter num - 4 4 12 4 17 20

TABLE VIII: Values of the estimated parameters for
scaled initialization for image with SNR = 5dB, Nh = 1

param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0986 0.1006 0.0683 0.0394 0.0204 -0.0021 -0.0994
ma2 0.1819 0.1825 0.1270 0.0728 0.0369 0.0010 -0.1819
an1 0.1011 0.1011 0.0712 0.0404 0.0203 0 -0.1010
an2 -0.0703 -0.0669 -0.0474 -0.0281 -0.0135 0 0.0698

valid % - 96.961 99.742 99.857 99.944 100.000 99.998
std % - 0.8132 2.3364 3.9619 4.7796 5.3943 6.6510

Iter num - 20 19 6 18 19 25

TABLE IX: Values of the estimated parameters for scaled
initialization for image with SNR = 5dB, Nh = 2

VI. CONCLUSION

The new non-radial vignetting model was introduced in
the paper based on a low-order harmonic representation
of the angular-dependent vignetting shape. The feasibility
of model estimation through non-linear optimization was
investigated and the influence of the proper parameter
initialization on the estimated model accuracy was evalu-
ated by comparing the estimated model to the synthetic
one. The effect of image noise level on reconstruction
accuracy was also considered. The presented results are
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param true\α 1 0.7 0.4 0.2 0 -1
ma1 0.0466 0.0459 0.0330 0.0175 0.0093 0.0001 -0.0465
ma2 0.1014 0.1005 0.0709 0.0400 0.0203 0.0002 -0.1018
ma3 0.0360 0.0371 0.0254 0.0142 0.0072 0 -0.0366
ma4 0.1408 0.1399 0.0984 0.0559 0.0282 0.0008 -0.1409
ma5 0.0895 0.0901 0.0626 0.0355 0.0179 0.0002 -0.0896
ma6 0.0176 0.0144 0.0121 0.0071 0.0035 -0.0004 -0.0180
ma7 0.1566 0.1560 0.1097 0.0625 0.0313 -0.0005 -0.1564
ma8 0.0218 0.0219 0.0158 0.0088 0.0044 -0.0008 -0.0219
ma9 0.0366 0.0368 0.0257 0.0145 0.0073 0.0005 -0.0363
an1 0.4492 0.4496 0.3148 0.1800 0.0898 0 -0.4484
an2 0.2998 0.2984 0.2103 0.1191 0.0600 0 -0.2992
an3 -0.4346 -0.4351 -0.3041 -0.1744 -0.0869 0 0.4350
an4 -0.0787 -0.0781 -0.0549 -0.0322 -0.0157 0 0.0781
an5 -0.2185 -0.2181 -0.1530 -0.0876 -0.0437 0 0.2191
an6 -0.4015 -0.4022 -0.2811 -0.1607 -0.0803 0 0.4019
an7 -0.0884 -0.0895 -0.0620 -0.0359 -0.0177 0 0.0883
an8 0.4547 0.4541 0.3184 0.1817 0.0909 0 -0.4545
an9 -0.0004 -0.0002 -0.0003 -0.0003 -0.0001 0 0.0007

valid % - 97.850 97.970 98.882 98.677 98.366 98.635
std % - 1.5375 2.6741 4.3433 5.4530 6.2868 9.4832

Iter num - 125 60 61 20 60 81

TABLE X: Values of the estimated parameters for scaled
initialization for image with SNR = 5dB, Nh = 9

so far limited to the simplified case with a priori known
origin of the model. The paper shows that highly accurate
models can be estimated especially for a lower number
of angular harmonics with residual gain error std of less
than 0.03%. Even for images corrupted with 5dB noise
the gain error std is still below 3% with proper parameter
initialization prior to optimization. Such results are very
encouraging and in our future work, the model origin
estimation will also be considered, as well as appropriate
analytical methods for parameter initialization. The higher-
order models with a larger number of angular harmonics
are more challenging for estimation as was illustrated
for the case with 9 harmonics. The study of non-radial
vignetting and its correction provides valuable insights
into the nature of vignetting and the potential for new and
improved correction methods.
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