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Abstract—Autonomous Vehicle driving is one of the most
actively developed systems in the automotive industry. Pro-
ducing a reliable autonomous driving system is a complex
multistage problem. The road lane lines are traffic signs
with high level of semantics that determine how a vehicle
should move, what actions are allowed to be performed,
etc. Comparing different modifications of the PilotNet neural
network model, the usage of detected lane lines, and their
implications on vehicle autopilot driving performance is the
topic of this paper. The lane lines are identified by neural
network that has been trained by processing images with
previously marked lane lines from CULane dataset. Vehicle
autopilot driving performance is analyzed using autopilot
model running on Euro Truck Simulator 2. Proposed models
are analyzed and compared in multiple driving and weather
environments including highway, off-road and urban driv-
ing during day, night and rain conditions. The lane line
recognition (classified by a U-Net neural network model
from images) is compared with additional control and path
planning to determine whether it leads to better autonomous
driving performance and smaller driving system model.

Keywords— Autonomous Driving, Autopilot, Convolutional
Neural Networks, Euro Truck Simulator 2, Image Processing,
Virtual Controller

I. INTRODUCTION

Autonomous vehicle driving is one of the most actively
developed systems in the automotive industry. The ini-
tiative comes from both industry and science as high-
performance computing and artificial intelligence technol-
ogy become cheaper, widely available and more advanced.
Such systems offer increased comfort, driving experience
and safety, while reducing road accidents. Based on the
degree of automation, there are six levels of autonomous
driving, which are: level zero (no automation at all), level
one (very light automation; cruise control, etc.), level two
(some automation but requires continuous human atten-
tion), level three (self driving with required intervention
in severe conditions), level four (highly autonomous), level
five (completely autonomous). Road lane lines are traffic
signs with high level of semantics, since they determine
vehicles movement and actions that are allowed to be
performed. This makes lane lines critical component in
autonomous driving as they describe the path for self
driving cars and ensure the vehicle will not unpredictably
change lanes. Comparing different modifications of Pilot-
Net neural network model [1], usage of detected lane lines

based on LaneUNet model [2], [3], and its implications
on vehicle autopilot driving performance is the topic of
this paper. The remainder of this paper is organized as
follows: section II gives a brief overview of previous and
current work on lane detection and autonomous driving
pilots. Section III provides description of the problem
being addressed, along with the algorithms used and the
formation of the dataset. The training process, evaluation
and results are displayed in Section IV. Section V con-
cludes this paper.

II. RELATED WORK

Producing a reliable autonomous vehicle driving system
is complex multistage problem, and critical part of it
is lane detection. The following papers are dealing with
different approaches to the problem of visual road lane
lines detection.
Zheng et al. [4] proposed a Cross Laxer Refinement
Network (CLRNet) for detecting lines by utilizing both
high- and low-level semantic features in the images which
correlate to the drive lanes.
Dong et al. [5] proposed a hybrid spatio-temporal deep
learning network for continuous lane detection based on
multiple sequential frames. The described working theory
gives that lane lines can be better detected if past knowl-
edge is used by sending multiple frames in the sequence,
and the lane is detected only on the last frame. The authors
have shown through experiments that their model out-
performs other state-of-the-art models by utilizing single
frame feature extraction module combined with spatio-
temporal recurrent network model feature integrator and
coder-decoder structure, which enabled it to be end-to-
end learned.
Liu et al. [6] proposed a new approach to tackle lane
detection in scenarios with complex topologies. Proposed
approach is a top-to-bottom lane detection method that
first detects line instances, then predicts lane shape for
every detected instance. A conditional lane detection
strategy based on conditional convolution and row-wise
formulation is introduced to resolve lane instance-level
discrimination problem.
Qiu et al. [7] introduced a transformer network to the
road lane detection problem. The authors proposed a novel
framework called PriorLane, which enhances segmentation
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of the fully vision transformer by introducing a low-cost
prior knowledge. Results on their Zjlab dataset showed
that the proposed method outperforms other SOTA meth-
ods.
Jin et al. [8] used a novel method to detect road lanes in
eigenlane space. First, authors have introduced Eigenlanes,
which are data-driven lane descriptors for structurally
diverse lines (like curves and straight lines). Then, by
obtaining best candidate lanes through approximation,
authors have used a detection neural network to find
optimal lanes.
In [9], He et al. proposed a generative adversarial network
to find an enhanced feature space where lane features are
distinctive while maintaining a similar distribution of road
lanes in the wild. Novel Repainting and Imitating Learning
(RIL) framework experiments proved effectiveness both on
CULane and TuSimple for road lane detection methods.

Borjanski et al. [10] proposed a convolutional neural
network (CNN) for learning autonomous driving from
raw pixels of a single front-facing camera by mapping
them into steering commands.
Chitta et al. [11] proposed a mechanism for integrating
image and LIDAR representations using self-attention.
This approach uses transformers at multiple resolutions
to fuse perspective view with the bird’s eye view
feature maps. The motivation for the approach was
under-performance of the end-to-end learning in complex
driving scenarios with heavy traffic and dynamic agents
high-density.
Chekroun et al. [12] presented a novel method
called General Reinforced Imitation (GRI), which
combines benefits from exploration and expert data.
The authors proposed a simplifying hypothesis, that
expert demonstrations can be seen as perfect data whose
underlying policy receives a constant high reward. GRI
combines offline demonstration agents and online RL
exploration agents.
Hao et al. [13] introduced a novel safety-enhanced
autonomous driving framework based on transformers
called the Interpretable Sensor Fusion Transformer
(InterFuser). The framework fuses information from
multi-modal multi-view sensors for comprehensive
scene recognition and adversarial event detection. The
framework also generates intermediate interpretable
features that provide more semantics that are exploited to
better constrain actions.
Wu et al. [14] introduced a novel two-branch method for
autonomous driving. Branches are based on trajectory
planning and direct control of vehicle. While trajectory
planning branch predicts the future trajectory, the control
branch receives the corresponding guidance from the
trajectory branch. The control branch makes a multi-step
prediction scheme in the way the relationship between
current action and future states can be reasoned. Outputs
from the branches are fused together to an achieve
advantage from each branch.
Toromanoff et al. [15] presented a novel technique
that used a reinforcement learning (RL) approach

to autonomous driving. It contains coined implicit
affordances to leverage RL for urban driving, which
include lane keeping, pedestrian and vehicles avoidance
and traffic light detection. The authors have successfully
managed to present an RL agent which is capable of
handling traffic light detection.

III. THE PROPOSED APPROACH

This paper compares how pre-marked road lane lines
impact autonomous driving system when the system is
trained with and without pre-marked lines. The original
authors of PilotNet [16], [17] developed a deep learning
neural network for autonomous driving and stated that the
deep learning network will perform better due to internal
components self-optimizing to maximize overall system
performance if it were given no human-selected interme-
diate optimizing criteria, such as lane line detection. Such
criteria are understandably selected for ease of human
interpretation, but this doesn’t automatically guarantee
maximum system performance. This paper examines the
influence of human interpretable data as additional infor-
mation provided to deep neural networks. The Europilot
[18] project is an interface between Euro Truck Simulator
2 (ETS2) [19] and Python code that was used to investigate
the impact of the pre-marked lane lines (lane detection)
on a driving performance of an PilotNet model. The
autopilot model uses only raw pixels from simulator as
input, extended with pre-marked lane lines generated by
LaneUNet.

A. Self-driving algorithms

Authors [1] argue that providing the neural network with
raw data is the best way to create a robust self-driving
system which can navigate its way even on unmarked lanes
(unpaved roads, parking lots):

"The system automatically learns internal rep-
resentations of the necessary processing steps
such as detecting useful road features with only
the human steering angle as the training sig-
nal. We never explicitly trained it to detect,
for example, the outline of roads. Compared
to explicit decomposition of the problem, such
as lane marking detection, path planning, and
control, our end-to-end system optimizes all pro-
cessing steps simultaneously. We argue that this
will eventually lead to better performance and
smaller systems. Better performance will result
because the internal components self-optimize to
maximize overall system performance, instead
of optimizing human-selected intermediate cri-
teria, e.g., lane detection. Such criteria under-
standably are selected for ease of human inter-
pretation which doesn’t automatically guarantee
maximum system performance."

PilotNet CNN model was used in [1], [18] for autonomous
driving system only on captured frames of Euro Truck
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TABLE I: PilotNet architecture

Layer type Layer description
Input planes 200 × 200 RGB

2D CNN layer 24 filters, kernel_size=(5, 5), strides=(2, 2)
Normalization layer

2D CNN layer 36 filters, kernel_size=(5, 5), strides=(2, 2)
Normalization layer

2D CNN layer 48 filters, kernel_size=(5, 5), strides=(2, 2)
Normalization layer

2D CNN layer 64 filters, kernel_size=(3, 3), strides=(1, 1)
Normalization layer

2D CNN layer 64 filters, kernel_size=(3, 3), strides=(1, 1)
Normalization layer

FC layer 100 neurons
Normalization layer

FC layer 50 neurons
Normalization layer

FC layer 10 neurons
Normalization layer

FC layer 1 neuron
Normalization layer

Simulator 2. The model architecture is composed of fol-
lowing layers as shown in Table I.

B. Lane Lines Detection

A road lane is a portion of roadway allocated to a single
line of vehicles and their movement to control and guide
drivers in order to reduce traffic confusion. It is indicated
by painted longitudinal lines or embedded markings on
roadway pavement, along with road surface markings such
as lane direction indicators. Lane lines detection is one
of the critical detection problems in the vision navigation
systems of the intelligent vehicles [4]. It is a traffic sign
with high-level semantics which determines how a vehicle
should move and what actions it should perform in traffic
(such as switching lanes if the line is dashed or not
switching/overtaking if the lane is solid or double solid,
etc.).

1) Lane Lines Detection Model: Lane line classification
from an image was done by a U-Net-like model [2],
[3], called LaneUNet. LaneUNet consists of 4 different
stages: downscale, encoder, decoder, and output generator,
as shown in Figure 1. The model is configured to work
with images with a resolution of (400× 400) pixels, with
two classes: Lane and Not Lane. The chosen training
optimizer for this model was RMSprop, with the loss
function defined as categorical cross-entropy.

2) PilotNet model and modifications: The PilotNet [1]
model that was inherited from Europilot project [18], has
five convolutional layers followed by three fully connected
layers. The optimizer used for learning PilotNet is stochas-
tic gradient descent (SGD), while the loss function is
mean square error (MSE) in reference to the angle of the
recorded steering wheel data The LaneUNet model, with
frozen internal layer weights, was added to input layer of
PilotNet in three different ways:

• Direct input (1 Channel PilotNet), was made for
control purposes as proof that lane lines are not
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Fig. 1: LaneUNet structure

reference data for driving and has smallest size of
input data 400× 400× 1.

• Overlayed in green channel (3 Channel PilotNet), was
introduced as a way to include lane lines without
increasing size of input data.

• Additional channel of input (4 Channel PilotNet),
adds lane lines as additional channel and has biggest
size of input data 400× 400× 4.

The original PilotNet model was included for comparison
as reference with an input data size as 400 × 400 × 3.
A complete overview of all aforementioned modifications
done to PilotNet model can be seen in Figure 2.

C. Dataset generation

Both the LaneUNet and PilotNet models requires data
for training, since pretrained models were not used. For
LaneUNet, a modified and prepared dataset was used,
while PilotNet training dataset were recorded.

1) LaneUNet Training Dataset: LaneUNet training data
is based on CULane [20] dataset and extended with
data augmentation. CULane lane line was plotted with
a line width of 13 pixels. Data augmentation was done
to increase the size of dataset inspired by the work of
Mamun et al. [21] and to increase robustness of the model.
Every image in the dataset was kept as original, mirrored
randomly by up/down or left/right, randomly cropped,
and randomly perspective cropped, also brightness was
changed by a random value. The complete number of
frames after combining original CULane dataset and aug-
mented frames was 668021 frames. Learning and valida-
tion subsets were divided from this combined number of
frames in an (80 : 20) ratio.

2) PilotNet Training Dataset: Data for training Pilot-
Net models was recorded using ETS2 and a steering wheel
Controller (Thrustmaster F430) by utilizing Europilot [18]
data generation script. While recording data, the ETS2
internal resolution was set to 1152×864 and the graphical

1224 MIPRO 2023/AIS



RG
B

Input Frame

400× 400× 3

400×400×3 400×400×1 400×400×3 400×400×4

LaneUNet

Argmax

RG
B
L

RG
B

+

Orig. PilotNet 1ch. PilotNet 3ch. PilotNet 4ch. PilotNet

Fig. 2: PilotNet Modifications Overview

TABLE II: Rough estimate: recorded data locations and
conditions

Location
Condition Day&

Clear
Day&
Rain

Night&
Clear

Urban 7.86% 0% 5.96%
Offroad 3.46% 0% 1.41%
Contry road 1.12% 0% 0.91%
Highway 34.48& 6.21% 38.64%

level of details was set to "High" in order to make recorded
frames close to real-life frames of CULane dataset. The
recorded data consists of 249190 frames captured at rate
of 25 frames per second (fps) which equals of 2 hours
and 46 minutes. Dataset was divided into training and
validation subsets by 80 : 20 ration. Recorded data consist
of multiple driving conditions as shown in Table II. After
recording, frames were cropped to include only road view
out of the vehicle cabin as suggested in the Europilot
[18] project post processing script. After recording, frames
were cropped to include only road view out of vehicle
cabin as suggested in Europilot [18] project post pro-
cessing script . Captured steering wheel data contains
three values: steering angle, brake and acceleration pedal
position. For the purpose of this paper only steering angle
values were used in order to simplify the autonomous
driving problem.

IV. EXPERIMENTS

A. LaneUNet Evaluation

Examples for the evaluation of final LaneUNet model
after 8935 epochs with an evaluation loss of 0.0598 and a

validation accuracy of 97.94229% on a validation part of
dataset is shown in Table III. Additional evaluation results
of the model on ETS2 frames are shown in Table IV. It is
obvious that model was not able to detect lane lines in off-
road scenarios. This comes from the fact that CULane does
not include frames that are similar to off-road scenarios
from ETS2.

TABLE III: Evaluation Example: LaneUNet on CULane

Highway Urban

In
pu

t
L

ab
el

E
st

im
at

e

B. PilotNet evaluation

PilotNet and its modifications were trained for 320
epochs. Neural network models for evaluation in the
simulator were chosen based on the best results of val-
idation loss and accuracy value shown in Table V, and
additionally for each model epochs 100, 200 and 320 were
also included. These models were chosen as a uniform
distribution through learning epochs. This totals 20 models
for live evaluation tests in ETS2. Due to limitations of
ETS2, evaluation tests of each neural model were done
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TABLE IV: Evaluation Example: LaneUNet on ETS2

Highway fork Off-Road

In
pu

t
E

st
im

at
e

TABLE V: PilotNet Models Training results

Model Value Loss Accuracy Validation
Loss

Validation
Accuracy

Original
PilotNet

epoch 305 305 315* 307**
value 1.13104 0.21225 0.75563 0.26586

1 Channel
PilotNet

epoch 170 1 183* 1**
value 59.70996 0.01470 58.38287 0.0

3 Channel
PilotNet

epoch 320 300 243* 308*
value 0.21720 0.27705 0.54382 0.27416

4 Channel
PilotNet

epoch 320 315 276* 284**
value 0.29463 0.27160 0.57606 0.27568

by accelerating the vehicle to specific velocity, engaging
the built in ETS2 speed cruise control and then activating
the neural model for steering input through a virtual
steering wheel controller. The evaluation test is manually
stopped either when the vehicle hits roadside or it drives
off road. There are 4 evaluation locations: Urban, Off-
Road, Country Road, Highway. Due to the nature of the
simulation, each test was run only once in identical initial
conditions and yielded consistent results when repeated.
Results of evaluation are shown in Tables VI, VII, VIII
and IX. The displayed results show PilotNet models that
have LaneUNet pre-marked lane lines in preprocessing
have better driving performances. Time value in the table
represents the time that model under test is able to drive
before hitting a road barrier or making a dangerous action.
The result in tables shows the best performing model on
Urban location for Day&Rain is 3 Channel PilotNet. For
Night&Clear shows that 4 Channel PilotNet is the best.
For Night&Rain the best performing network is 4 Channel
PilotNet, even though this condition is not present in
learning dataset. Original PilotNet is the best performing
in Day&Clear conditions.
The bast performing model for Off-Road location is 4
Channel PilotNet, except for Night&Rain condition where
3 Channel PilotNet is slightly better. Original PilotNet has
performance values close to the best model in Day&Rain
and Night&Rain conditions. 4 Channel PilotNet model
is the best in Country Road location at Day&Rain and
Night&Clear conditions, while 3 Channel PilotNet is better
at Day&Clear and Night&Rain conditions.
The highway location is dominated by 4 Channel PilotNet
model except for the Day&Rain condition where the
Original PilotNet model is slightly better.

TABLE VI: PilotNet Models Evaluation Results,
Location: Urban

L
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D
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&
R
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N
ig

ht
&

C
le

ar

N
ig

ht
&

R
ai

n

Model Epoch Time [s]

O
ri

gi
na

l
Pi

lo
tN

et

100 3.83834 2.71345 10.96311 14.28656
200 11.23782 2.96604 11.00926 14.27493
320 4.09575 2.71534 10.96144 26.98413
307** 16.23458 16.55962 14.14848 14.38183
315* 4.35174 16.51747 14.09681 14.34698

3
C

ha
nn

el
Pi

lo
tN

et

100 7.13 3.43547 10.19311 11.28226
200 9.24653 3.65635 11.05906 11.22218
320 7.46921 3.26165 14.05149 10.92544
243* 9.2222 17.83614 10.09567 10.61436
308** 9.008 12.51868 14.15266 11.36733

4
C

ha
nn

el
Pi

lo
tN

et

100 10.88346 4.5254 11.0694 45.60521
200 10.67793 12.44566 18.45405 30.41055
320 3.12718 7.26811 11.49798 17.51122
276* 3.89543 10.67699 11.26646 17.54752
284** 2.98151 9.71796 11.06521 17.72489

TABLE VII: PilotNet Models Evaluation Results,
Location: Off-Road

L
oc

at
io

n:
O

ff
-R

oa
d

C
on
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tio
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D
ay

&
C

le
ar

D
ay
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N
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C
le

ar

N
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R
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Model Epoch Time [s]

O
ri

gi
na

l
Pi

lo
tN

et

100 54.20072 53.19633 6.55412 7.84882
200 57.95325 92.22533 9.05661 21.15158
320 53.32286 12.84984 6.95825 20.03792
307** 53.11098 53.8781 3.49425 15.174
315* 52.54838 54.28565 3.39048 12.439

3
C

ha
nn

el
Pi

lo
tN

et

100 52.34927 53.25124 12.75766 19.81261
200 16.60616 52.3291 21.84162 21.41379
320 19.10798 47.94633 19.51536 20.50395
243* 50.51435 45.65567 18.86555 21.32946
308** 19.47457 53.00088 21.68742 21.01616

4
C

ha
nn

el
Pi

lo
tN

et

100 7.75637 53.66708 21.86947 17.89866
200 133.53286 38.02302 25.09455 3.60717
320 52.75734 91.98988 21.74667 3.98164
276* 57.83613 92.43867 6.53626 4.50465
284** 14.25077 3.34132 21.65484 3.69087

V. CONCLUSION

Comparing different modifications of PilotNet neural
network model [1], usage of detected lane lines based on
LaneUNet model [2], [3], and its implications on vehicle
autopilot driving performance is the topic of this paper.
The first modification is based on sending the results
of LaneUNet directly to the PilotNet model, replacing
its original input. The second modification overlays lane
lines detection results with the green channel of raw input
frames from ETS2. The third modification adds extra
channel to the input data of PilotNet which consists of
LaneUNet detection results on ETS2 raw frames. The
Original PilotNet model is used as reference during train-
ing and evaluation. Overall, the best result is obtained by
the third modification of PilotNet, followed by the second
modification, the Original PilotNet and lastly the first
modification. ETS2 is used to train and validate PilotNet
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TABLE VIII: Evaluation Results, Location: Country
Road

L
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d

C
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D
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C
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N
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Model Epoch Time [s]

O
ri
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na

l
Pi

lo
tN

et

100 93.59565 93.66441 35.67297 9.7689
200 94.48444 91.17316 47.53247 9.88838
320 95.95082 86.93309 47.17973 38.77904
307** 96.15499 54.81467 47.33901 48.01871
315* 49.66787 95.80688 47.79666 48.64261

3
C

ha
nn

el
Pi

lo
tN

et

100 111.42274 93.6237 38.54933 12.17085
200 93.86836 98.7547 38.62285 87.21712
320 16.3591 98.97377 39.31017 88.75275
243* 92.71974 98.42113 38.49544 18.61541
308** 99.97491 98.56087 37.84902 85.84725

4
C

ha
nn

el
Pi

lo
tN

et

100 53.6726 103.0861 68.14147 75.26335
200 60.62461 79.25365 67.89574 67.955
320 55.4819 92.57005 14.27094 67.53863
276* 60.73591 85.66176 69.02957 31.79299
284** 60.68326 95.33997 67.81089 68.2345

TABLE IX: PilotNet Models Evaluation Results,
Location: Highway

L
oc
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io

n:
H
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C
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Model Epoch Time [s]

O
ri
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l
Pi
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tN

et

100 22.89169 2.33809 41.45732 22.26164
200 23.93349 2.86061 41.88455 30.73024
320 24.81868 5.97896 41.3217 31.16824
307** 7.82739 2.56142 41.61631 9.56341
315* 24.05545 2.43687 41.03164 30.54046

3
C

ha
nn

el
Pi

lo
tN

et

100 2.69504 2.56999 23.25907 25.09734
200 2.71988 2.59072 29.00045 24.95291
320 2.00677 2.36893 59.41756 25.29419
243* 4.23775 2.22972 59.00256 23.57244
308** 2.25181 2.46994 59.54084 24.61422

4
C

ha
nn

el
Pi

lo
tN

et

100 2.48298 2.87298 62.71282 31.1772
200 14.85202 5.44053 41.97563 4.46748
320 11.49844 3.03276 26.73725 3.47817
276* 14.99146 3.66295 89.29299 5.14221
284** 60.05419 3.14683 10.62356 6.1917

models on four different locations. The LaneUNet model,
used for lane line detection, is trained on augmented
CULane dataset.
In future work, both models for lane line detection and
PilotNet can be improved by including a temporal com-
ponent such as LSTM or GRU. The learning dataset for
the PilotNet model can be further extended by diversifying
locations and conditions. Also, instructions for lane line
changes and pedal controls (acceleration, braking) can be
added.
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