
Neuroevolution for the Sustainable Evolution of
Neural Networks

E. Otović1’3, J. Lerga1,3, D. Kalafatovic2,3 and G. Mauša1,3
1 University of Rijeka, Faculty of Engineering, Department of Computer Engineering, Rijeka, Croatia

2 University of Rijeka, Department of Biotechnology, Rijeka, Croatia
3 University of Rijeka, Center for Artificial Intelligence and Cybersecurity, Rijeka, Croatia

eotovic@riteh.hr

Abstract - The predictive performance of a neural
network depends on its weights and architecture.
Optimizers based on gradient descent are most commonly
used to optimize the weights, and grid search is utilized to
find the most suitable architecture from the list of
predefined architectures. On the other hand, neuroevolution
offers a solution for the simultaneous growth of neural
network architecture and the evolution of its weights. Thus,
it is not limited by the user-defined list of possible
architectures and can find configurations optimal for a
specific task. Both approaches can be effectively parallelized
and take advantage of modern multi-process systems. In this
research, we compare neuroevolution and backpropagation
in terms of the time consumed by the algorithm, the
predictive performance of the neural network, and the
complexity of the neural network. The total time for each
algorithm is measured along with the times for each section
of the algorithm and the time spent on synchronization due
to the multi-process setting. The neural networks are
compared by their predictive performance in terms of
Matthews correlation coefficient score and their complexity
as the number of nodes and connections. The case study is
based on two synthetic and two real-world datasets for
classification tasks.

Keywords - machine learning; neuroevolution; neural
networks; genetic algorithm; sustainability; classification

I. INTRODUCTION
Machine learning is a rapidly growing branch of

computer science and is considered to be one of the
enabling factors for industry 4.0. However, the powerful
hardware required to run machine learning algorithms
and its energy consumption have become a concern in
terms of sustainability [1, 2]. Neuroevolution, a form of
machine learning that evolves neural networks specific to
a given task through an evolutionary process, may
provide a more sustainable alternative to traditional
gradient-based machine learning methods.

Gradient-based optimization algorithms have become
a de facto standard for training neural networks. These
algorithms are generally computationally efficient and
converge relatively fast, especially when datasets with a
small number of features are provided. However, the
design of neural network architecture and the choice of
adequate hyperparameters poses an obstacle, especially
when it comes to the application of machine learning to a
problem that has not been previously studied [3].
Suggested configurations and practices from literature
can serve as a good starting point, but ultimately, the
near-optimal configuration is found through

experimentation. Grid search is an automated way of
searching for the best-performing hyperparameters
configuration from the predefined set of possible
hyperparameter values. It is a widely used method
because it can be easily implemented and understood, but
is also easily scaled to multiple processes for faster
execution [3]. The search space for grid search is defined
by the user and it quickly becomes inefficient when the
search space is too big, as it grows rapidly with the
number of dimensions and possible values. It may also
end up with suboptimal solutions since it considers only
the predefined values for each hyperparameter.

On the other hand, neuroevolution is a form of genetic
algorithm which allows for the exploration of a large
solution space which can lead to the discovery of novel
and creative solutions and its search space is not bounded
by user-defined configurations. Since it performs a global
search, it is less likely to get stuck in local optima and is
less dependent on initial conditions [4]. Finally, it yields
neural networks that have the architecture as well as the
weights adapted for the given task. Genetic algorithms
are known for their high scalability and neuroevolution is
not an exception. Being a gradient-free method, it allows
the optimization of the neural network directly on the
non-differentiable objective function. Because of this, it
has gained popularity in reinforcement learning settings
as it can directly aim to maximize the reward signal [5].

Neuroevolution removes the burden of user-defined
search spaces and finds novel topologies, however, it is
considered to converge slower than
backpropagation-based neural network training.
Optimizing the neural network topology using the
backpropagation-based methods requires training and
validation for every considered topology, while
neuroevolution speeds up this process by optimizing
weights and topology simultaneously. Hence, the goal of
this study was to evaluate and compare neuroevolution
and grid search in terms of execution time, model’s
predictive performance and complexity.

II. MATERIALS AND METHODS

A. NeuroEvolution of Augmenting Topologies
Neuroevolution of augmenting topologies (NEAT) is

a method first proposed by Kenneth Stanley in 2002 for
evolving artificial neural networks through the use of
genetic algorithms [6]. Its main distinction from
traditional neural network training is that it allows for the
topology to change during the evolution process. This can

1208 MIPRO 2023/AIS

lead to the discovery of novel topologies that are better
suited for a specific task.

The algorithm flow diagram is shown in Fig. 1. It
starts by initializing the random population of neural
networks (solutions). The initial neural networks contain
only the input and output nodes that are fully connected
and the weights of connections are randomly initialized.
Internally, it represents a neural network with a list of
nodes and connections among nodes. Then, the
population of initial solutions is evaluated. In the
speciation step, the population is separated into multiple
species based on genetic similarity with the aim to
prevent premature convergence and maintain diversity.
The main loop then starts and consists of three steps:
reproduction, fitness evaluation and speciation. More fit
individuals get to reproduce more often through natural
selection and lead the population towards solutions that
maximize the fitness function. The generated offspring
form a population for the next generation. The algorithm
runs until a stopping criterion is met, then exits the loop
and returns the fittest individual as a solution to the
problem.

The next generation is formed through elitism,
crossover and mutation operators. In this paper, we
employ species-wise elitism which preserves two
best-performing individuals from each species into the
next generation and thus ensures that best-performing
individuals are not lost during the evolution process. A
crossover operator in neuroevolution involves combining
genes (nodes, connections and weights) from two
individuals to create an offspring. This allows for the
exploration of new combinations of genes, potentially
leading to improved solutions. We used three mutations
like the ones introduced in the original NEAT
implementation. Add node mutation disables and replaces
a single existing connection in a network with a node and
two connections; one going from the source to the newly
inserted node and the other going from the inserted node
to the destination. The weight of the incoming connection
is 1, and the weight of the outgoing connection is set to
the weight of the disabled connection. The activation
function for a node is randomly sampled from a list of
available activation functions. Add connection mutation
randomly inserts a single connection between two
previously unconnected nodes and randomly initializes its
weight. Since this study was focused only on feedforward
neural networks, only connections that do not form a
cycle in a network are allowed. Weight mutation
randomly changes a fraction of connection weights in a
network, either by adding a random value to them or by
replacing them with a random value. The probability for
each mutation is configured separately. The probabilities
for add node mutation and add connection mutation
control the rate at which new topologies are explored. If
they are too low, the exploration will be slow and it will
slow down the convergence of the algorithm. On the
other hand, if they are too high, individuals may not have
enough time to get their weights optimized through
crossover and weight mutation. The fraction of offspring
generated only by mutation is controlled by the crossover
probability parameter.

Figure 1. Program flow of NEAT.

NEAT aims to prevent premature convergence and
preserve diversity in a population through speciation.
Individuals from the population are grouped into species
based on their genetic similarity and the best-performing
individual from each species is chosen as its
representative. When a newly formed individual has to be
assigned to a species, it is sequentially compared against
the representative from each species. The unnormalized
compatibility distance 𝛅 shown in (1) is used in the
comparison and if it is below a certain threshold 𝛅t then
the individual is assigned to that species.

(1)δ = 𝑐
𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡

 * 𝐷 + 𝑐
𝑤𝑒𝑖𝑔ℎ𝑡𝑠

* 𝑊

The compatibility distance computes the genetic
similarity between individual and species representatives.
Its lowest value is zero when two genomes are equal,
while higher values indicate greater difference. It
considers the number of disjoint genes D (nodes and
connections), which represents the number of genes that
are present only in one of the individuals, but not both. It
also considers the average difference in connection
weights for connections that are common to both𝑊
individuals. The contribution of genes and weights to the
compatibility distance can be regulated with cdisjoint and
cweights parameters. NEAT effectively tracks genes by
assigning them historical markings that make it easy to
determine genes that are shared by two individuals.
Speciation allows the algorithm to explore solutions
around multiple maxima at the same time. Members of

MIPRO 2023/AIS 1209

TABLE I. OVERVIEW OF USED DATASETS AND THEIR PROPERTIES.

Dataset
name

Type Number of
features

Number of
instances per
class

Total
size

Moons Synthetic 2 10000, 10000 20000

Circles Synthetic 2 5000, 5000 10000

Iris Real-world 4 50, 50, 50 150

Breast
cancer

Real-world 30 212, 357 569

Figure 2. Visualization of moons (a) and circles (b) datasets.

the same species reproduce among themselves and on
rare occasions interspecies mating occurs. The species
that have not increased their fitness for a certain number
of generations become stagnant and are not allowed to
reproduce.

Fitness sharing is also introduced to prevent a single
species from taking over the entire population. Equation
(2) demonstrates the calculation of the shared (modified)
fitness f ’ for an individual with fitness f that belongs to
the species of size n.

(2)𝑓' = 𝑓
𝑛

B. Algorithm and Model Evaluation
In this study, the algorithms and models are

evaluated in terms of execution time, predictive
performance of the model and model’s complexity.

The total execution time is measured for both
algorithms. In the NEAT algorithm, we as well measure
the time required to complete the fitness function
evaluation and the time spent on speciation and
reproduction.

We used the Matthews correlation coefficient (MCC)
to assess the predictive performance of the models. For
the binary classification problems, it is defined as in (3):

(3)𝑀𝐶𝐶 = 𝑡𝑝 × 𝑡𝑛 − 𝑓𝑝 × 𝑓𝑛
(𝑡𝑝 + 𝑓𝑝)(𝑡𝑝 + 𝑓𝑛)(𝑡𝑛 + 𝑓𝑝)(𝑡𝑛 + 𝑓𝑛)

Variables tp, tn, fp and fn denote the number of true
positives, true negatives, false positives and false
negatives, respectively. Even though a confusion matrix
cannot be described perfectly with a single number, the

MCC score is regarded as one of the best options since it
considers all four cells of the confusion matrix in the case
of binary classification. This also makes it suitable for
datasets with imbalances among the classes. MCC score
has been generalized and can also be used in multi-class
and multi-label classification problems [7].

The Wilcoxon signed-rank test is a non-parametric
statistical test used to compare paired samples. In this
case, it was used to compare the MCC score of
neuroevolution models and grid search models in order to
determine whether one of two algorithms performs
significantly better than the other one. We used a
significance level of 0.05.

The complexity of a neural network can be expressed
as the number of nodes and connections between them.
For the purpose of this paper, this count does not include
the nodes in the input and output layers because we are
interested only in the number of hidden nodes that are
required to solve the task. We count each bias term as a
single connection.

III. CASE STUDY

A. Datasets
In this case study we employ two synthetic and two
real-world classification datasets. Both synthetic datasets
have two features and two equally distributed classes.
These datasets contain 2D points belonging to two
objects; in the case of the moons dataset it is two curves
resembling the shape of the moons (Fig. 2a), and in the
case of the circles dataset it is a circle with a ring around
it (Fig. 2b). Two input features represent (x, y)
coordinates of the point while the task of the model is to
predict which object the point belongs to.

The iris dataset contains instances of three different
species of Iris flowers (Iris setosa, Iris virginica and Iris
versicolor) with four features representing various aspects
of the flowers (sepal length, sepal width, petal length and
petal width). Breast Cancer Wisconsin (Diagnostic)
dataset contains malign and benign instances of breast
cancer. Thirty provided features describe the
characteristics of the cell nuclei present in the digitized
image of a fine needle aspirate (FNA) of a breast mass.
Moons, Iris and Breast cancer datasets were used from
the scikit-learn library, while circles dataset was
manually created [8, 9]. The overview of the used
datasets is given in Table I.

Features used to describe instances in a dataset can
have different units and scales which poses a problem for
neural networks because the ones with a greater range of
values may have a greater impact on the prediction
outcome. To combat this, features were standardized for
NEAT and backpropagation algorithms by centering the
data points around zero and scaling to the unit variance
[10]. If observed values for feature i are denoted as xi,
then standardization of that feature can be expressed as in
(4).

(4)𝑥
𝑖
' =

𝑥
𝑖
 − 𝑚𝑒𝑎𝑛(𝑥

𝑖
)

𝑠𝑡𝑑(𝑥
𝑖
)

1210 MIPRO 2023/AIS

To accurately estimate an algorithm's ability to adapt
and model’s ability to predict new data, we use stratified
10-fold cross-validation. The stratification guarantees that
the distribution among classes will be preserved and thus
prevents the under-representation of the minority class. In
each iteration, nine folds are designated for training and
one fold is held out for testing. In this way, each instance
will be used exactly once for testing and thus minimizing
the impact of random sampling on the performance
estimation.

B. Algorithm Parameters
We used the NEAT algorithm with a population size

of 250 and it was run for a maximum of 1000 generations
or was stopped earlier if the maximal fitness did not
increase for 300 generations. Output neurons used the
softmax activation function while ReLU was used for
hidden nodes. Weights were randomly sampled from a
normal distribution with a mean of 0 and a standard
deviation of 0.4. The crossover probability was set to 0.8,
and the probability for interspecies mating was set to
0.01. Add node mutation probability was set to 0.1, add
connection mutation was set to 0.3 and weight mutation
was set to mutate 40% of all weights. A dynamic
compatibility threshold was employed to preserve the
number of species around 10 and the species would
become stagnant after 20 generations without
improvement. Compatibility parameters cdisjoint and cweights
were set to 2 and 1, respectively.

(5)𝑓 = 𝑀𝐶𝐶 + 1. 001

Equation (5) shows the fitness function that was used
for neuroevolution. The original NEAT implementation
cannot handle negative fitness scores due to its
implementation of fitness sharing which is a problem
since the lowest possible value of MCC is -1. Therefore,
we had to increment it by 1.001 which allowed us to use
it as a strictly positive fitness function.

Grid search tested three values for ADAM optimizer
learning rate (0.01, 0.001, 0.0001) while other parameters
were kept at Keras default values. We also varied the
number of hidden layers (1, 2, 3), the number of neurons
in each of them (10, 30, 50, 70, 90, 110) and dropout (0,
0.1, 0.2, 0.3, 0.4, 0.5). In total, this yields 4644
configurations that had to be tested. All the hidden layers
used ReLU as the activation function. The output layer
used the softmax activation function and the number of
neurons corresponded to the number of classes in a given
dataset. We used the Adam optimizer with a batch size of
32. Early stopping and dropout on each hidden layer were
used to prevent overfitting. The training proceeded for the
maximum of 20 epochs for moons and circles datasets
due to their relatively large size, while the maximal
number of epochs for iris and breast cancer datasets was
set to 300 which provided enough time for convergence.
30% of the training was kept aside as the validation set
and was used to evaluate and pick the best performing
neural network configuration after training. The one with
the highest MCC was evaluated on a held-out test set and
that score is reported in Table II.

TABLE II. AVERAGE VALUES OF PREDICTIVE PERFORMANCE AND COMPLEXITY OF NEURAL NETWORKS FOUND BY NEAT AND GRID SEARCH. THE NUMBER OF
EVALUATED NETWORKS, EXECUTION TIME AND THE NUMBER OF GENERATIONS ARE ALSO SHOWN. THE ASTERISK INDICATES STATISTICAL SIGNIFICANCE AT THE

CHOSEN LEVEL OF SIGNIFICANCE (Ɑ=0.05).

NEAT Grid search

Moons Circles Iris Breast
cancer

Moons Circles Iris Breast
cancer

MCC score
(test set)

1.0 0.913* 0.972 0.974* 1.0 0.981* 0.922 0.941*

Number of
hidden nodes

8.8 14.9 7.5 8.2 10.0 229.0 69.0 89.0

Number of
connections

39.3 69.9 39.6 87.6 52.0 12 717.0 2 578.0 3 597.0

Generations
count

506 962 487 617 / / / /

Evaluations
count

99 038 192 412 95 378 122 940 4 644 4 644 4 644 4 644

Total time
(per fold)

2 153s 4 135s 345s 610s 7 197s 6 447s 2 088s 2 261s

Evaluations
per second

46.0 46.53 276.46 201.54 0.65 0.72 2.22 2.05

MIPRO 2023/AIS 1211

C. Experimental Setup
The experiments were carried out on a single

computer with two Xeon E5 processors (24 physical
cores; 48 threads) with 64 GB of RAM. Both algorithms
were run in parallel with 12 workers. In the case of
NEAT, multiple workers were used for parallel evaluation
of genomes and in the case if grid search, it was used for
parallel evaluation of neural network configurations. Due
to the relatively large memory footprint of Tensorflow, it
was not possible to use more workers on the same
machine. Parallel execution of Python code was achieved
with the Dask library which enables parallel execution on
a single or across multiple computers. The dataset was
distributed to all workers prior to the execution of the
experiment. During each fitness evaluation in NEAT,
genomes from the population had to be scattered among
the workers, while in the case of the grid search, only
numerical values describing neural network configuration
and hyperparameters had to be sent to the workers. The
fitness function or specific neural network configuration
is evaluated in a worker process and the result is returned
to the main process.

IV. RESULTS AND DISCUSSION

Results from Table II show that NEAT completed on
average 3.7 times faster than grid search. Even though
our experiment was set up in a way that would allow both
algorithms to find relatively good solutions in a
reasonable time, it is impossible to fairly compare their
performances in terms of total execution time. This is
because the duration of the execution of each algorithm
primarily depends on the configuration set by the user,
e.g. stopping criteria for NEAT and search space size for
a grid search. Grid search evaluated 4 644 pre-set neural
network configurations for each dataset, while the
number of neural networks evaluated by NEAT depends
on many (stochastic) factors and cannot be known in
advance. Therefore, we considered the number of neural
networks evaluated per second which reflects the
exploration rate of each algorithm. We found that NEAT
is capable of performing exploration 90 times faster than
the grid search. Grid search spends most of its time in the
training phase tuning the weights of neural networks
while the evaluation phase is relatively cheap time-wise.
On the other hand, NEAT is capable of creating a new
candidate neural network and evaluating it much more
quickly. If the topology is predefined and fixed,
backpropagation is an efficient algorithm to fine-tune the
weights. Some researchers have proposed their
combination in which NEAT would evolve the topology
while backpropagation is used to fully or partially tune
the weights [11, 12]. However, such methodology may
not be applicable in some cases, e.g. if a non-derivable
activation function is used.

Results from Table III show that NEAT spends most
of the time evaluating the fitness function (on average
73.5%) even with parallelization introduced. This is
expected because it involves the construction of a neural
network from genes in a genome and performing forward
pass to compute the output. The former depends on the
size of the neural network while the latter depends on the
size of the neural network and the size of the dataset. It is
noticeable that larger datasets (moons and circles)

required more time for forward pass than smaller datasets
(iris and breast cancer). The second most intensive step
is reproduction which consists of elitism, crossover and
mutation and takes 19% of the time. The most expensive
operations from this step are the identification of joint
and disjoint genes during the crossover, verification if a
new connection can be inserted without creating a cycle
during add connection mutation and copying large
genomes during elitism and crossover. The third most
time-consuming step is speciation which computes the
genetic distance between the genome and the
representative of each species and takes 6.8% of the time.
This involves finding the number of joint and disjoint
genes as well as the average distance in connection
weights which makes this computation relatively
expensive. All other steps such as the computation of
shared fitness are relatively fast and take on average 0.8%
of the time. Therefore, fitness evaluation, reproduction
and speciation are all dependent on the size of the
genome and as evolution progresses and genomes get
bigger, these steps require more time to complete.

Comparing the performance of the model evolved by
neuroevolution and the model found by grid search, it is
evident that both of them have achieved high MCC scores
for all datasets. Both algorithms have achieved the
highest possible score on the moons dataset which can be
attributed to its relatively simple shape and the fact that
classes are well separated (Fig. 2a). Statistical test
revealed that grid search outperformed NEAT on circles
dataset by a statistically significant margin of 7.4%.
NEAT outperformed grid search by 5.4% and 3.5% on the
iris and breast cancer datasets, respectively, which are
relatively small in comparison to the other two datasets.
While a statistically significant difference was found only
in the case of the breast cancer dataset, it is worth noting
that NEAT was significantly faster than grid search in
every case, highlighting its potential as a more efficient
approach. These results may suggest that NEAT is more
suitable for smaller datasets.

In this research, we employed early stopping and
dropout to control the overfitting. Early stopping
mechanism evaluates model performance (generalization
power) on a portion of the training set that was not used
for training and stops training if validation loss stagnates
TABLE III. MEASUREMENTS OF TIME NEAT SPENT IN EACH PART OF THE

ALGORITHM DURING A SINGLE GENERATION. MEASUREMENTS ARE REPORTED
IN MILLISECONDS.

Function Moons Circles Iris Breast
cancer

Fitness
evaluation

4 020
(92%)

4 003
(91%)

457
(55%)

582
(56%)

Speciation 77
(2%)

91
(2%)

87
(10%)

133
(13%)

Reproduction
time

284
(6%)

298
(7%)

282
(34%)

298
(29%)

Other 8
(<1%)

12
(<1%)

9
(1%)

21
(2%)

Total 4 389 4 404 835 1 034

1212 MIPRO 2023/AIS

for 10 epochs. We tested multiple values for dropout
which increased the search space by a factor of 6. When
early stopping criteria is met, training is stopped and
weights are restored to the ones with the lowest validation
loss. Hyperparameters that are commonly used for
addressing known problems can be found in the literature.
However, for new or unfamiliar problems, these
parameters need to be determined either manually or
through an automated approach such as grid search. This
also introduces the problem of choosing the amount of
data that should be kept aside for early stopping. The
more data is kept aside, the better the estimate of the
model’s performance will be, but at the same time less
data will be available for training. On the other hand,
setting too little data aside will result with high variance
in the estimation of generalization by early stopping and
may stop training too soon or too late. Therefore, it is a
trade-off between the precision of the generalization
power estimate and the amount of information that can be
extracted from the training set.

The results from Table II reveal that neural networks
evolved by NEAT are consistently less complex with
regard to the number of hidden nodes and connections
and this can be attributed to two factors. The limiting
factor for traditional machine learning is that layers are
stacked upon each other and fully connected. Even
though this increases the model capacity, it introduces
unnecessary connections and makes the neural network
more prone to overfitting. On the other hand, NEAT starts
with the population of minimal fully connected neural
networks and the complexity of candidate topologies
gradually increases through trial and error exploration.
The evolutionary process of NEAT prevents the addition
of unnecessary connections by favouring the solutions
with higher fitness. Therefore, if a newly added node or a
connection does not contribute to the fitness, eventually it
will cease to exist. Additionally, using the historical
markings, NEAT keeps track of previously inserted nodes
and connections and utilizes it to prevent duplicate nodes
and connections to be inserted. Neuroevolution operates
on a finer level, e.g. activation function is separately set
for each neuron and custom connections between nodes.
Grid-search can be modified to consider more specialized
architectures to some extent, e.g. by trying multiple
activation functions for each layer, but such
configurations rapidly increase the search space and are
still inferior to NEAT in terms of customizability.

V. CONCLUSION

In this paper, we compared the NEAT neuroevolution
algorithm and grid search in terms of execution time,
predictive performance and neural network complexity.
The measurements of execution time have shown that
NEAT is capable of exploring the search space 90 times
faster than grid search. However, in some cases, it is
possible to combine neuroevolution and backpropagation
to preserve the exploration of topologies and efficient
weight-tuning mechanisms. With the addition of more
parameters to the grid search, better results may be
achieved at the cost of execution time. We demonstrated
the ability of neuroevolution to more effectively search a
much larger search space of possible configurations that
are specialized for the given task. This resulted in NEAT

consistently evolving neural networks with fewer nodes
and connections than the ones that were found by grid
search. In future studies, it would be valuable to compare
NEAT against other commonly used hyperparameter
optimization techniques, such as random search or
Bayesian optimization, in order to gain a deeper
understanding of the relative strengths and weaknesses of
these methods and their applicability to different neural
network optimization problems. We also plan to explore
the potential of NEAT to improve the accuracy and
efficiency of predictive models in peptide chemistry
where a high number of available representation schemes
together with high dimensionality and imbalance of data
are an important challenge that requires smart
optimization procedures. Our research findings suggest
that NEAT is a promising approach for improving peptide
activity prediction, particularly in cases where datasets
are limited in size. Simpler neural networks are more
suitable for deployment on battery-powered embedded
devices in order to reduce computational demands and
energy consumption while improving the responsiveness
of the system to the input. This can lead to more
sustainable and eco-friendly applications of artificial
intelligence in emerging IoT devices.

ACKNOWLEDGMENT

This project was conducted using the resources of the
supercomputer Bura at the University of Rijeka, Center
for Advanced Computing and Modelling and supported
by the Croatian Science Foundation/Hrvatska zaklada za
znanost (grant no: UIP-2019-04-7999 and
DOK-2020-01-4659).

This paper acknowledges the support of the Erasmus+
Key Action 2 (Strategic partnership for higher education)
project No. 2020-1-PT01-KA203-078646: “SusTrainable
- Promoting Sustainability as a Fundamental Driver in
Software Development Training and Education”. The
information and views set out in this paper are those of
the author(s) and do not necessarily reflect the official
opinion of the European Union. Neither the European
Union institutions and bodies nor any person acting on
their behalf may be held responsible for the use which
may be made of the information contained therein.

REFERENCES

[1] Peres, Ricardo Silva, et al. "Industrial artificial intelligence in
industry 4.0-systematic review, challenges and outlook." IEEE
Access 8 (2020): 220121-220139.

[2] "The Fourth Industrial Revolution: what it means, how to
respond", World Economic Forum, Jan. 2016,
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-re
volution-what-it-means-and-how-to-respond/

[3] Yang, Li, and Abdallah Shami. "On hyperparameter optimization
of machine learning algorithms: Theory and practice."
Neurocomputing 415 (2020): 295-316.

[4] Kumar, Manoj, et al. "Genetic algorithm: Review and application."
Available at SSRN 3529843 (2010).

[5] Igel, Christian. "Neuroevolution for reinforcement learning using
evolution strategies." The 2003 Congress on Evolutionary
Computation, 2003. CEC'03.. Vol. 4. IEEE, 2003.

[6] Stanley, Kenneth O., and Risto Miikkulainen. "Evolving neural
networks through augmenting topologies." Evolutionary
computation 10.2 (2002): 99-127.

MIPRO 2023/AIS 1213

[7] Gorodkin, Jan. "Comparing two K-category assignments by a
K-category correlation coefficient." Computational biology and
chemistry 28.5-6 (2004): 367-374.

[8] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in
Python." the Journal of machine Learning research 12 (2011):
2825-2830.

[9] Newman, David J., et al. "UCI repository of machine learning
databases, 1998." (1998).

[10] Kotsiantis, Sotiris B., Dimitris Kanellopoulos, and Panagiotis E.
Pintelas. "Data preprocessing for supervised learning."
International journal of computer science 1.2 (2006): 111-117.

[11] Chandra, Rohitash, and Christian W. Omlin. "The Comparison and
Combination of Genetic and Gradient Descent Learning in
Recurrent Neural Networks: An Application to Speech Phoneme
Classification." Artificial Intelligence and Pattern Recognition.
2007.

[12] Cui, Xiaodong, et al. "Evolutionary stochastic gradient descent for
optimization of deep neural networks." Advances in neural
information processing systems 31 (2018).

1214 MIPRO 2023/AIS

