
The Study of the Target Set Selection Problem
under Deterministic Linear Threshold Model Using

Evolutionary Algorithms
Mikhail Smirnov, Stepan Kochemazov, Alexander Semenov

ITMO University, St Petersburg, Russia
Emails: masmirnov.inf@gmail.com, stepan.kochemazov@itmo.ru, alex.a.semenov@itmo.ru

Abstract—In this paper we study the Target Set Selection prob-
lem (TSS) – the well-known combinatorial problem associated
with collective behaviour in networks. For a given network graph
and the information diffusion model that specifies a dynamic
process of how vertices activate each other, TSS aims to identify
a set of initially active vertices of minimum cardinality such
that they manage to activate all the other network vertices. This
problem is computationally hard but has numerous applications
in practice, thus the development of computational algorithms for
TSS is a relevant topic. A surprising fact is that the spectrum
of algorithms for TSS presented so far in the literature is quite
limited. The main novelty of our study consists in the hybrid
approach which combines evolutionary and greedy algorithms
for TSS. In more detail, we view TSS as a pseudo-Boolean
optimization problem and solve it using simple evolutionary
algorithms (in fact several variants of (1+1)-EA). In order to
identify a good initial approximate solution we employ a greedy
algorithm. In the experiments we apply the developed algorithms
to TSS in the context of Deterministic Linear Threshold Model
(DLTM) and demonstrate that the presented approach shows
good effectiveness when solving TSS on networks with dozens
thousands of vertices on personal computer.

Keywords—Boolean satisfiability problem; Target Set Selection;
Information Spread

I. INTRODUCTION

Network analysis is one of the most actively developing
areas of modern computer science. It is sufficient to say that
the references to key papers on random network models e.g.
[1], [2] number in tens of thousands. The present paper studies
the phenomenon of information spread in networks and the
ways how one can solve combinatorial problems associated
with this phenomenon. In particular, we consider the Target Set
Selection (TSS) problem [3], [4], which is tightly connected
to the Influence Maximization Problem (IMP), which in turn
was studied in the widely-cited paper [5].

Both TSS and IMP study the spread of activation in
networks, where the vertices represent agents conforming to
certain behavioral rules. These rules specify the information
diffusion process: how active vertices can activate other ver-
tices at the following time moments. The goal of IMP is
for a given network and information diffusion model to find
a subset of vertices such that if these vertices are active
at the initial time moment, the number of vertices at the
end of information diffusion process (the so-called influence

spread) is maximized. Meanwhile, TSS aims to find a subset
of vertices of minimum cardinality such that it activates all
vertices in a network.

We consider TSS in the context of the so-called De-
terministic Linear Threshold Model (DLTM) (see e.g. [5]),
with regards to which from the one hand there are known
results about its intractability [3], [4], [5], on the other, for
relatively small dimensions it can be solved exactly using
some combinatorial algorithms (such as the algorithms for
solving the Boolean satisfiability problem (SAT) of Integer
Linear Programming problem (ILP)).

The main contributions of the paper are as follows. First,
we present a natural formulation of TSS as a pseudo-Boolean
black-box optimization problem. Second, we combine evo-
lutionary algorithms for pseudo-Boolean optimization with
a greedy algorithm from [6]: the latter is used to find a
reasonable starting point for the optimization process. Third,
in the computational experiments we show the viability of the
proposed approach since it makes it possible to solve TSS
under DLTM for networks with tens of thousands vertices on
a usual PC.

II. PRELIMINARIES

Hereinafter, we consider the representation of some col-
lective V = {v1, . . . , vn} via a directed graph G = (V,A)
to which we further refer as to network. Here V is the set
of vertices of G and A is the set of arcs of this graph. For
an arbitrary vertex v ∈ V let us define its neighborhood as
a set Uv ⊆ V \ {v} comprised of all vertices u such that
(u, v) ∈ A, i.e. the corresponding arc is directed from u to
v. For simplicity, we assume that G does not contain loops
(however, it is possible to transfer the main results of the paper
to take loops into account). Let us associate with network G
discrete time moments t ∈ {0, 1, 2, . . .}. With each vertex
v ∈ V associate the function av(·) the value of which at time
moment t + 1 (t ≥ 0) is defined as the function of values of
functions au for vertices u ∈ Uv computed at time moment t:

av(t+ 1) =

{
1,

∑
u∈Uv

au(t)× w(u,v) ≥ θv
av(t), otherwise

(1)

In (1) w(u,v) is some weight (which is usually specified by a
positive rational number), and θv is a positive rational number
called threshold of vertex v. In addition to that, we assume that

1202 MIPRO 2023/AIS

at time moment t = 0 the values of all functions of the kind
(1) are the numbers from the set {0, 1} and that the weights
w(u,v) and thresholds θv are specified at time moment t = 0
and do not change with t.

By {0, 1}n denote the set of all possible binary vectors of
length n. It is clear, that for an arbitrary t ∈ {0, 1, 2, . . .}
the values of functions (1) for all vertices of network G can
be specified by a binary vector αt ∈ {0, 1}n. Let us refer to
this vector as to a state of a Discrete Dynamic System (DDS)
specified by network G (or simply the state of G) at time
moment t. The described rules specify a function of the kind:

FG : {0, 1}n → {0, 1}n (2)

which defines the transitions between the states of G. Let us
refer to state α0 of G at time moment t = 0 as to initial state.

It is clear that for any initial state α0 there exists some t∗

such that for all t > t∗ it holds that αt = αt∗ . Any vector
α ∈ {0, 1}n such that FG(α) = α is called a fixed point of
FG. For a considered DDS it is easy to see that starting from
any initial state α0 ∈ {0, 1}n the corresponding system will
reach a fixed point in at most n time moments.

If there are specified functions of the kind (1) for network
G and in addition all the rules mentioned above are satisfied,
then let us say that the considered DDS is specified under
Deterministic Linear Threshold Model (DLTM).

We will call vertex v active at time moment t, if the
coordinate of vector αt which corresponds to vertex v is equal
to 1. A Target Set (TS) V ′, V ′ ⊆ V is a set of vertices which
are active in the initial state α0. Let us define V ′ by means
of some vector α0 and compute the values of functions (1)
for some number s of time moments, s ≤ n. For every vertex
V which is active at time moment t, t ≤ s let us say that
v was activated by target set V ′. Note, that if αt is not a
fixed point, then the number of active vertices at time moment
t + 1 is greater than that at time moment t. Therefore, if
at some moment t the number of active vertices is deemed
insufficiently small, it makes sense to consider the state αt+1.

The Target Set Selection problem (TSS) is stated as follows:
for the predefined number R, 1 ≤ R ≤ n find the smallest
target set V ′ (smallest TS) such that it activates (in the sense
above) at least R vertices in a network.

As it is noted in [3] (with reference to [5]) in the formulation
described above TSS is NP-hard. Also, based on the results of
[5], TSS can not be approximated within any constant factor
under assumption that P ̸= NP . Moreover, TSS is W [P]-
complete [3] and thus it is fixed-parameter intractable if it is
parameterized by the size of the minimum target set. However,
TSS can be effectively (in polynomial time in the size of the
description of G) reduced to combinatorial problems such as
SAT or ILP using quite natural reductions, presented e.g. in
[7], [8], [9].

III. TSS AS A PSEUDO-BOOLEAN OPTIMIZATION
PROBLEM

As we noted above, it is possible to solve both IMP and
TSS under DLTM exactly, for example using SAT or ILP,

as well as approximately (however, without any guarantees
on the approximation ratio). In the present paper we practice
the second approach. In particular, we reduce TSS to the
pseudo-Boolean optimization problem which we then solve
using evolutionary algorithms.

A pseudo-Boolean function (see e.g. [10]) is a function of
the following kind:

Φ : {0, 1}n → R. (3)

The function in equation (3) is not required to be defined
analytically. Moreover, it is possible that the values of Φ
are produced by some algorithm, the complexity of which is
ignored (essentially, it is treated as an oracle). In such case
(3) is referred to as a black-box function. If (3) is a black-box
function, then one can use only metaheuristic algorithms to
optimize it [11]. In this situation it is treated as the so-called
fitness function.

Note, that when solving TSS the exact methods from [10]
or [9] are applicable only to networks with relatively small
number of vertices (up to several hundred), since the increase
of this number leads to the increase of the encoding size and
consequently to longer runtimes of the employed combina-
torial algorithms. However, for metaheuristic algorithms this
fact is inconsequential, since the optimized function can be
computed fast.

The search space in the case of TSS is represented by a
Boolean hypercube {0, 1}n. An arbitrary λ ∈ {0, 1}n specifies
a particular target set: the ones in λ correspond to vertices in
G which are active at time moment t = 0. The fitness function
for TSS is the function:

Φ : {0, 1}n → {1, . . . , n}, (4)

which is defined via function (2) as follows: for a particular
λ ∈ {0, 1}n first construct the target set represented by the
vector corresponding to the initial state α0 = λ of network G.
Next, compute the functions

F 1
G(λ) = FG(λ),

F 2
G(λ) = FG

(
F 1
G(λ)

)
,

. . . ,

F k
G(λ) = FG

(
F k−1
G (λ)

)
,

(5)

where F k
G(λ) = γ is either a fixed point of function FG or

wt(γ) ≥ ε ·|V | (wt(·) is the function computing the Hamming
weight), and ε ∈ (0, 1) specifies the portion of vertices that
need to be active in the original TSS formulation. As we
already mentioned above, in order to enter a fixed point it
is sufficient to make at most n calculations of the value of
function FG for any TS λ. The value of Φ is defined as the
Hamming weight of vector λ, specifying TSS, in the case if
wt(γ) ≥ ε · |V |. Otherwise, if wt(γ) < ε · |V | and γ = F k

G(λ)
is a fixed point of FG then the value of (4) in λ is viewed as
undefined, and the fitness function takes the maximal value n.

It is possible to use any metaheuristic algorithm to optimize
the function (4) defined above. In the next section we will
briefly describe the main algorithms that we will apply to TSS
in the formulation above.

MIPRO 2023/AIS 1203

IV. METAHEURISTIC ALGORITHMS USED TO SOLVE TSS

One of the simplest possible metaheuristic algorithms that
can be used to minimize (4) is the well-known (1+1)-
Evolutionary Algorithm ((1+1)-EA). Apparently, it was first
described in [12]. The elementary step in (1+1)-EA is the
so-called random (1+1)-mutation: with an arbitrary vector
λ ∈ {0, 1}n we associate n random independent Bernoulli
trials with probability of success (which is referred to as
mutation rate) p = 1/n. If the trial number i ∈ {1, . . . , n}
is successful, then the bit number i in vector λ is flipped (e.g.
changed into the complementary bit). Let λ′ be the vector
resulting from mutation. If Φ(λ′) ≤ Φ(λ) (in the case of the
minimization problem) then move to the point λ′ and apply
the next random mutation to λ′, otherwise mutate λ again
(this situation is called stagnation). We always store the Best
Known Value (BKV) of the considered fitness function.

The (1+1)-EA algorithm despite its simplicity has a lot
of nontrivial mathematical properties [13]. In theory, the
algorithm is extremely inefficient: in [13] it was shown that
the upper bound on its complexity is nn in the sense of the
expected value of the number of random mutations performed
to reach a global extremum, and thus in the worst-case scenario
the algorithm is even worse than the simple random search.
However, in practice (1+1)-EA can show surprisingly good
effectiveness. It follows from the fact that on average only a
single bit in λ is flipped as a result of random mutation: in
more detail, the expected value of the number of flipped bits
in λ is 1, when the mutation rate is p = 1/n. This fact means
that on average (1+1)-EA acts similar to the Hill Climbing
algorithm [14], and thus can take into account the features of
the landscape of a considered function (e.g. it can make use
of the convex areas).

A number of works proposed different approaches to the
modification of (1+1)-EA aimed at reducing its worst-case
complexity. One of the best approaches of this kind is the
(1+1)-Fast Evolutionary Algorithm with parameter β ((1+1)-
FEAβ), described in [15]. Its main idea lies in the use of
the variable mutation rate: in particular, before mutating each
λ ∈ {0, 1}n a random variable µ is observed, the spectrum of
which is Sµ = {1, 2, . . . , n/2}, and the distribution (the so-
called ”power-law distribution Dβ

n/2”) is defined as follows

Pr{µ = k, k ∈ Sµ} =
(
Cβ

n/2

)−1

· 1

kβ
(6)

In (6) β, β > 1 is the parameter of the algorithm, Cβ
n/2 is

a normalizing constant: Cβ
n/2 =

∑n/2
i=1 i

−β (it is necessary
for the normalizing probabilities). A single mutation in the
context of (1+1)-FEAβ looks as follows: first generate a value
µ ∈ {1, . . . , n/2} in accordance with the distribution Dβ

n/2,
then apply the random mutation with mutation rate p = µ/n
to the current λ ∈ {0, 1}n.

The upper bound on the complexity of (1+1)-FEAβ is
O
(
Cβ

n/2 · n
β · 2n

)
, which asymptotically is significantly bet-

ter than that for (1+1)-EA. However, the expected value of
flipped bits of (1+1)-FEAβ is a constant independent of n

only when β > 2. For example in the case if β = 3 (see [14])
we have that E[dH(λ, λ′)] ≈ 1.3685 . . ., where dH(λ, λ′) is
the Hamming distance between vectors λ and λ′).

In paper [16] the switching variant of (1+1)-EA, denoted
as (1+1)-SEAδ (from Switched Evolutionary Algorithm) was
proposed. It simplifies the original idea underlying (1+1)-
FEAβ . This algorithm also employs variable mutation rate,
but the switching is performed between two alternatives:
the rate of p = 1/n is chosen with probability 1 − δ/n,
and the rate p = 1/2 is chosen with probability δ/n, for
parameter δ ∈ (0, 1). It is easy to show (similar to how
it was done in [14]) that for any δ ∈ (0, 1) the upper
bound on the complexity of (1+1)-SEAδ of the following kind
holds: O(n · 2n). For the expected value of the number of
flipped bits in the case of (1+1)-SEAδ we have (see [15]):
E[dH(λ, λ′)] = 1 + δ

(
1
2 − 1

n

)
. Thus, e.g. for δ = 0.5 the

following estimation holds: E[dh(λ, λ
′)] = 1.25−o(1). Thus,

at least theoretically, (1+1)-SEAδ looks better than (1+1)-
FEAβ .

Apart from the evolutionary metaheuristics described above
we applied to solving TSS the greedy algorithm which is a
slightly modified variant of the algorithm from [6]. We also
used evolutionary algorithms to start from the initial solution
found by the greedy algorithm. The essence of the latter is as
follows. Consider network G with functions of the kind (1)
associated with vertices. At an arbitrary time moment with
vertex v associate two values: Iv which is called the influence
of vertex v and θ̃v called residual threshold. The residual
threshold is computed as follows:

θ̃v = θv −
∑
u∈Uv

au × w(u,v)

It is clear that if at some time moment θ̃v ≤ 0 (while at the
previous moment it took place that θ̃v > 0) then the vertex v
becomes active at this time moment.

Assume, that DDS G starts from some TS and goes into a
fixed point, and at the same time the constraint on the number
of active vertices is not satisfied. In this case we need to choose
the next vertex to be included into TS. In accordance with the
greedy strategy, the vertex with the greatest influence is added.
To compute the influence Iv of vertex v it makes sense to take
into account both the number of vertices that can be made
active by adding v to TS and how adding it to TS reduced the
residual thresholds of the other vertices. Thus, as the measure
of influence of vertex v we consider the following value:

Iv = |Av|+
∑
w∈W

∆θw
θw

(7)

The value of (7) is computed as follows. Assume that before
adding v to TS the system G is in the fixed point λ. We
add v to TS and recompute the values of functions (1) for all
network vertices until we enter the next fixed point λ′. Denote
by Av the set of vertices that became active and by W the set
of vertices the residual thresholds of which changed during
the transition from λ to λ′ (the situation λ = λ′ is allowed).

1204 MIPRO 2023/AIS

TABLE I
EXPERIMENTAL RESULTS FOR SMALL NETWORKS. EVOLUTIONARY ALGORITHMS WERE ALLOWED TO PERFORM UP TO 105 ITERATIONS. THE RESULTS

OF NONDETERMINISTIC ALGORITHMS ALGORITHMS ARE AVERAGED OVER 10 LAUNCHES AND ARE PRESENTED IN CURSIVE.

exact-sat
(Glucose3) greedy (1+1)EA greedy&(1+1)EA

WS(50,8,0.5)ft
18

(4093 s)
26

(0.001 s)
18.3

(9.93 s)
18.3

(10.084 s)

BA(50,4)ft
14

(1575 s)
17

(0.007 s)
14.2

(10.111 s)
14

(10.167 s)

WS(50,8,0.5)rt
7

(3594 s)
11

(0.008 s)
7.4

(11.066 s)
7.3

(11.119 s)

BA(50,4)rt
6

(1614 s)
6

(0.002 s)
6

(10.973 s)
6

(11.145 s)

By ∆θw (∆θw ≥ 0) denote the value by which the residual
threshold of w is reduced during λ → λ′.

After checking all inactive vertices in λ we add to TS the
vertex v with maximum influence Iv .

V. COMPUTATIONAL EXPERIMENTS

In computational experiments we considered both random
networks and fragments of real-world networks. The random
networks were constructed in accordance with Watts-Strogatz
[1] and Barabasi-Albert [2] models. As for the real-world
networks: in particular, we used the ’fb’ and ’wiki’ net-
works from the SNAP database 1. The latter represent the
fragments of Facebook (ego-Facebook) and Wikipedia (wiki-
vote) respectively. In the original formulation some of the
considered graphs (e.g. Watts-Strogatz and Barabasi-Albert)
are undirected, thus, we replaced each edge by a pair of arcs
with opposite directions, connecting the respective vertices.
In all experiments the arc weights were generated as natural
numbers chosen randomly and uniformly from [1, 100]. As for
vertices’ thresholds, we considered both the variants where the
threshold was specified by a fixed number, as well as ones in
which thresholds were generated independently and randomly.
In the second case the threshold of an arbitrary vertex v was
calculated as a natural number θv = ⌈ε× (

∑
u∈Uv

wu,v)⌉ for
ε randomly and uniformly chosen from [1/2, 1]. For the fixed
thresholds we used the value of ε = 3/4.

All experiments were carried out on a PC with AMD Ryzen
3950x CPU (16 cores) and 64 GB RAM under Ubuntu OS.
The main object of our study are the evolutionary and greedy
algorithms for solving TSS that were described above.

For random graphs of small size (several dozen vertices) we
checked how the solutions found by metaheuristic algorithms
are close to the exact ones. In order to obtain the exact
solutions of TSS we employed the algorithms for solving
the Boolean satisfiability problem (SAT) [17], which are
actively applied today to diverse combinatorial problems. To
encode to SAT the problems of finding TSS of size K (i.e.
containing K vertices) we employed the methods that were
described in detail in [7]. In addition to that we used the
SAT encoding techniques for pseudo-Boolean constraints of
the kind

∑
u∈Uv

au(t)× w(u,v) ≥ θv from the PySAT toolkit
[18]. It should be noted that in [7] only the SAT encodings for
the cardinality constraints (e.g. if w(u,v) ∈ {0, 1}) were used.
To find the smallest K we used the dichotomous scheme that
employed the Glucose 3 SAT solver.

The results of these experiments are presented in Table I. In
particular, in this table we consider 4 networks with 50 vertices
each, generated in accordance with Watts-Strogatz (WS) (with
parameters k = 8, β = 0.5) and Barabasi-Albert (BA)
(with parameter m = 4). We considered both the cases with
the fixed threshold for all vertices (e.g. WS(50,8,0.5)ft) and

1http://snap.stanford.edu

TABLE II
EXPERIMENTAL RESULTS FOR LARGE NETWORKS. EVOLUTIONARY ALGORITHMS WERE ALLOWED TO PERFORM UP TO 104 ITERATIONS. THE RESULTS

OF NONDETERMINISTIC ALGORITHMS ALGORITHMS ARE AVERAGED OVER 10 LAUNCHES AND ARE PRESENTED IN CURSIVE.

greedy (1+1)EA greedy&(1+1)EA greedy&(1+1)FEA
β = 2.5

greedy&(1+1)FEA
β = 3

greedy&(1+1)SEA
δ = 0.5

greedy&(1+1)SEA
δ = 0.25

fb 537
(18.2 s)

968.7
(320.8 s)

437.8
(404.8 s)

438.3
(380.6 s)

437.1
(380.6 s)

440.4
(375 s)

438.6
(376 s)

wiki 3089
(38.5 s)

3716.6
(220.1 s)

3004.7
(347.8 s)

3001.7
(320.5 s)

3002.5
(321.9 s)

3004.6
(319.6 s)

3005.3
(319.2 s)

WS(10000,20,0.5) 2278
(117.6 s)

3909.7
(353.6 s)

2005.3
(722.2 s)

1991.0
(658.4 s)

1993.6
(661.2 s)

2000.0
(667.7 s)

2006.1
(667.7 s)

BA(10000,20) 1103
(341.9 s)

3891.1
(674.4 s)

1073.9
(1356.8 s)

1073.1
(1275.6 s)

1073.8
(1281.5 s)

1072.1
(1274.3 s)

1072.0
(1284.7 s)

MIPRO 2023/AIS 1205

Time (seconds)

Ta
rg

et
 S

et
 s

iz
e

2500

3500

4500

5500

6500

7500

0 100 200 300

(1+1)-EA

greedy&(1+1)-EA

Fig. 1. Convergence plot for a single launch of (1+1)-EA (blue) and of greedy
& (1+1)-EA (red) for 10000 iterations on the WIKI problem

with thresholds generated randomly according to the scheme
outlined above (e.g. BA(50,4)rt). The cells of the table present
the size of the found TS and the runtime of the employed
algorithm. Each evolutionary algorithm in each launch made
105 random mutations. As it was noted above, the SAT solver
finds an exact solution, but as it can be seen, even for such
small networks, it takes a lot of time. The greedy algorithm
works very fast, but the found solutions are not always close
to the exact one. As for the (1+1)-Evolutionary Algorithm, it
performed 105 random mutations sufficiently faster than the
SAT solver and yields the solutions that are close to the exact
ones. The best results have been obtained using the mixed
strategy, when the greedy algorithm is used to search for an
initial solution which is later improved by using (1+1)-EA:
in almost all launches this strategy managed to find an exact
solution.

In the next series of experiments we considered the networks
with several thousand vertices and employed metaheuristic
strategies described above, as well as the hybrid strategy
combining greedy and evolutionary algorithms, to solve TSS
on these networks. Note, that the SAT solvers can not tackle
TSS for networks of such dimension.

In Table II we present the benchmarks ’fb’ (4039 vertices)
and ’wiki’ (7115 vertices) mentioned above. We also consid-
ered Watts-Strogatz networks (with k = 20 and β = 0.5)
and Barabasi-Albert networks (with m = 20) with 10 000
vertices. In all cases the thresholds were generated randomly
in accordance with the scheme outlined above. Then we
applied to them the greedy algorithm as well as several
variants of (1+1)-EA, described above. In each launch each
evolutionary algorithm was allowed to perform 104 random
mutations. What’s interesting is that all variants of (1+1)-EA
showed more or less the same performance (in the sense of
improvement of the found TS). Also note, that the hybrid
strategy yielded the best results in the sense of the size of
the found TS.

In order to study in detail the behavior of the proposed
hybrid algorithm we considered the TSS problem for the WIKI
instance in the same configuration as in Table II. We measured
the pairs (time, current size of TS) before the first iteration and

gre
ed

y&
(1+

1)-
EA

gre
ed

y&
(1+

1)-
FE

A(2.
5)

gre
ed

y&
(1+

1)-
FE

A(3)

gre
ed

y&
(1+

1)-
SE

A(0.
5)

gre
ed

y&
(1+

1)-
SE

A(0.
25

)
2980

2985

2990

2995

3000

3005

3010

3015

3020

Ta
rg

et
 S

et
 si

ze

Fig. 2. Box plots of the size of the target set when solving TSS for the WIKI
instance using different hybrid algorithms

then after each 100 iterations of the evolutionary algorithm
and plotted them at Figure 1. Thus, both red and blue lines
have 10000 / 100 = 100 segments. The red plot corresponding
to the hybrid greedy&(1+1)-EA algorithm does not start at
0 because the corresponding time is required to construct an
initial solution using the greedy algorithm. Also, despite the
fact that it seems to not undergo any change, in fact, it steadily
decreases from 3089 to 3002.

To analyze the behavior of different variants of hybrid
algorithms on average, we performed 20 launches of each
algorithm on the same WIKI instance and summed the results
of these experiments in the boxplots at Figure 2. Each box
represents an interval from 1/4 to 3/4 quartile. The point
inside the box is the mean, the line inside corresponds to
the median. The whiskers have the length of 1.5 interquartile
distance, but since there are only outliers for (1+1)-FEA,
in most cases the whiskers just show the interval from the
minimum to the maximum. We also performed the Wilcoxon
Rank Sum Test between the standard greedy&(1+1)-EA and
its four modifications (i.e. 4 tests in total). The hypothesis in
each test was that ”the target set size in a modified hybrid
strategy is smaller than the target set size in greedy&(1+1)-
EA” with the significance level = 0.05. In all 4 cases the
hypothesis was not confirmed.

VI. CONCLUSION AND FUTURE WORKS

In this paper we study the well-known Target Set Selection
(TSS) problem which is associated with a more general prob-
lem of influence maximization [5]. We show that the problem
of finding the smallest TSS can be viewed in the context of the
general pseudo-Boolean optimization problem. To solve the
latter we employ metaheuristic algorithms: greedy algorithm
(which is a slightly modified algorithm from [6]) as well as
several variants of (1+1)- Evolutionary Algorithm. In the role
of benchmarks we use both random graphs (Watts-Strogatz,
Barabasi-Albert), and fragments of real-world networks. For
such graphs over several thousand vertices (up to 10 000)
we demonstrate that the best performance is achieved by

1206 MIPRO 2023/AIS

the hybrid strategy, in which the greedy algorithm is used
to find an initial approximation which is later improved by
the evolutionary algorithms. Our plans for the nearest future
include the development of parallel variants of evolutionary
and genetic algorithms for TSS.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable feedback
that made it possible to significantly improve the quality of
this paper.

This work was supported by the Ministry of Science and
Higher Education of Russian Federation, research project no.
075-03-2020-139/2 (goszadanie no. 2019-1339).

REFERENCES

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, pp. 440–442, 1998.

[2] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[3] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman, “Treewidth
governs the complexity of target set selection,” Discrete Optimization,
vol. 8, no. 1, pp. 87–96, 2011, parameterized Complexity of Discrete
Optimization.

[4] E. Ackerman, O. Ben-Zwi, and G. Wolfovitz, “Combinatorial model and
bounds for target set selection,” Theoretical Computer Science, vol. 411,
no. 44, pp. 4017–4022, 2010.

[5] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’03, 2003, pp. 137–146.

[6] A. Swaminathan, “An Algorithm for Influence Maximization and Target
Set Selection for the Deterministic Linear Threshold Model,” Master’s
thesis, Virginia Polytechnic Institute and State University, USA, 2014.

[7] S. Kochemazov and A. Semenov, “Using synchronous boolean networks
to model several phenomena of collective behavior,” PLOS ONE, vol. 9,
no. 12, pp. 1–28, 12 2014.

[8] S. Kochemazov, “Comparative study of combinatorial algorithms for
solving the influence maximization problem in networks under a deter-
ministic linear threshold model,” Procedia Comput. Sci., vol. 136, pp.
190 – 199, 2018.

[9] S. Kochemazov and A. Semenov, “Computational study of time con-
strained influence maximization problem under deterministic linear
threshold model for networks with nonuniform thresholds,” in 2019
42nd International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2019, pp. 1121–
1125.

[10] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete
Applied Mathematics, vol. 123, no. 1, pp. 155 – 225, 2002.

[11] S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013.
[12] H. Mühlenbein, “How genetic algorithms really work: Mutation and

hillclimbing,” in PPSN, 1992, pp. 15–26.
[13] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1)

evolutionary algorithm,” Theor. Comput. Sci., vol. 276, no. 1–2, p.
51–81, 2002.

[14] S. Russell and P. Norvig, Artificial Intelligence – A Modern Approach,
3rd ed. Pearson Education, 2010.

[15] B. Doerr, H. P. Le, R. Makhmara, and T. D. Nguyen, “Fast genetic
algorithms,” in GECCO, 2017, p. 777–784.

[16] A. Semenov, I. Otpuschennikov, and K. Antonov, “On some variants
of the merging variables based (1+1)-evolutionary algorithm with appli-
cation to maxsat problem,” in Mathematical Optimization Theory and
Operations Research, ser. LNCS, vol. 12755, 2021, pp. 111–124.

[17] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability - Second Edition, ser. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2021, vol. 336. [Online]. Available:
https://doi.org/10.3233/FAIA336

[18] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
toolkit for prototyping with SAT oracles,” in SAT, 2018, pp. 428–437.
[Online]. Available: https://doi.org/10.1007/978-3-319-94144-8 26

MIPRO 2023/AIS 1207

