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Abstract—The Boolean satisfiability problem (SAT) and maxi-
mum satisfiability problem (MaxSAT) are among the most well-
known combinatorial problems in today’s computer science. The
algorithms for their solving also go hand-in-hand, in that most
MaxSAT solvers employ SAT solvers as the so-called oracles. In
the present paper we perform a computational study of the RC2
algorithm, which is among the best state-of-the-art algorithms
for MaxSAT solving. We view it from the SAT oracle viewpoint
and consider how the SAT oracle’s runtime is distributed among
RC2 procedures and heuristics, and how this statistics differs
depending on the SAT solver employed as an oracle. In addition
to that we consider the two baseline MSE’18 configurations of
RC2, analyze their performance and experiment with blending
them together.
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I. INTRODUCTION

Nowadays, the industrial design poses many challenges that
require the use of highly efficient computational apparatus
for solving combinatorial problems of large dimension. In
particular, many problems can be expressed in a relatively
simple language, involving the constraints over the variables
that take integer values or even only the values from the set
{0,1}. They arise in economics, planning, computer-aided
design and many other areas. Among the most well known
scientific approaches for solving such problems one can point
out the ability to express them in form of instances of two
classical problems from Computer Science: the Integer Linear
Programming problem (ILP) [1] and the Boolean satisfiability
problem (SAT) [2].

ILP consists in maximizing the value of a linear function
defined over a set of integer variables while satisfying a
number of linear inequalities. In SAT the problem is specified
by an arbitrary Boolean formula, and the goal is to determine
whether there exists an assignment of all variables of a formula
on which it evaluates to True. While both problems are
NP-complete, in practical reality, ILP solving algorithms fit
well with large-scale optimization tasks planning, scheduling,
logistics, etc. Meanwhile, SAT solving algorithms are usually
employed to construct formal proofs or find counterexamples
under certain assumptions, and find a lot of uses in hardware
and software verification, certain areas of planning, etc.

What makes SAT unique is that the algorithms for its
solving are often used as the so-called oracles in the algo-
rithms designed for tackling combinatorial problems with the
hardness beyond NP. The term ”SAT oracle” is inspired by the
concept of oracles widely used in computational complexity
theory, where they represent some entities capable of solving
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certain (hard) problems. Two well-known examples of the
problems, the algorithms for solving which employ SAT
oracles, are Satisfiability Modulo Theories (SMT) [3] — the
approach that blends the rich expressiveness of languages of
mathematical theories different from propositional logic with
the effectiveness of modern SAT solvers, and Maximum Sat-
isfiability [4] — the optimization variant of SAT, that makes it
possible to naturally consider instances related to optimization.
After all, in day-to-day practice, it is usually more convenient
to solve optimization instances: find the shortest path from A
to B, establish the shipping schedule to minimize losses while
maximizing profits, etc., instead of decision instances: prove
or disprove that there is a path from A to B shorter than k,
or find a schedule under which the profits are at least P while
losses are at most L or prove that it does not exist.

The latter observation, together with the fast progress and
wide availability of fast SAT solving algorithms (compared to
the ILP area where commercial solvers are in a league of their
own performance-wise) led to a large popularity of MaxSAT
and the fast development of algorithms for its solving. In
the present paper we study one of the algorithms for solving
MaxSAT, called RC2 [5]. It was proposed in 2018 and took
the first place in both weighted and unweighted categories of
the MaxSAT Evaluations held in 2018 and 2019'.

In our study we look at RC2 from the perspective of the
employed SAT oracle in order to better understand the possible
venues for improving the interconnection between the higher-
order MaxSAT logic and the ground-level SAT oracle. For this
purpose we analyze the runtime distributions of the main RC2
procedures, especially the ones that employ SAT oracles.

Let us give a brief overview of the paper: in the next
chapter we introduce the necessary notation regarding SAT
and MaxSAT, provide the basic information about the ar-
chitecture of modern SAT and MaxSAT solvers. In Section
IIl we describe the RC2 algorithm, the way it uses SAT
solvers as oracles, and the related heuristics. After this we
present the details about the experimental setting, describe our
computational experiments and analyze the obtained data.

II. PRELIMINARIES

A Boolean variable is a variable that takes the values from
the set { False, True} which in practice usually converts into
{0,1}, where O represents False and 1 represents True. A
Boolean formula is comprised of Boolean variables connected

IThe MaxSAT Evaluations are annual competitive events for MaxSAT
solvers that promote and chronicle the progress in this area

MIPRO 2023/AIS



using braces and the so-called logical connectives. The latter
are the well-known logical operations that usually form a com-
plete basis, e.g. {A,—}, {A,V,—}, etc. In both SAT solving
and MaxSAT solving, Boolean formulas are considered in the
Conjunctive Normal Form (CNF), so for simplicity let us only
introduce this form. A formula in CNF is defined over the
basis {A,V,—}. CNF is a conjunction (A) of clauses, where
a clause is a disjunction (V) of literals, and a literal is either
a Boolean variable or its negation (—). Literals « and —z are
called complementary, because for any value of = one of them
will take the value 1. For convenience, the clauses in CNF are
not allowed to contain complementary or duplicate literals.
An assignment of variables is the set of values from {0,1},
assigned to each variable. An assignment is called satisfying
if it turns formula into 1 in accordance with the standard
semantics of logical connectives. In the case of CNF it is
especially easy to check that an assignment is satisfying: it is
sufficient to ensure that every clause if satisfied. A formula is
called satisfiable if it has at least one satisfying assignment,
otherwise it is called unsatisfiable.

A. SAT and SAT Solvers

The Boolean satisfiability problem (SAT) consists in the
following: for an arbitrary CNF to answer whether it is
satisfiable or not (decision problem). The more practical search
variant is to find a satisfying assignment if CNF is satisfiable.

The practical algorithms for solving SAT are called SAT
solvers. They have a (relatively) long history and are consid-
ered one of the success stories in today’s Computer Science.
The SAT solving algorithms achieved a tremendous progress
during the recent 30 years, going from barely being able to
tackle formulas with hundreds of variables and thousands of
clauses to effectively solving practical SAT instances with
hundreds of thousands of variables and millions of clauses.
This fact, together with the applications of SAT solvers in
formal verification of circuits [6] and software [7] made them
into an effective tool widely employed today in many other
areas, such as bioinformatics [8] or cryptography [9].

The result of the many years of progress in SAT solving
and the currently predominant algorithm for this purpose is
called Conflict-Driven Clause Learning (CDCL). The CDCL
SAT solvers enhance the depth-first search with various meth-
ods, such as clause learning and backjumping [10], variable
selection heuristics [11], restarts, heuristics for manipulating
the clauses of a formula mid-search, etc., see [2] for a
comprehensive overview. An important feature of some of the
state-of-the-art SAT solvers is the ability to work in the so-
called incremental mode [12], which makes it possible to use
a single SAT solver to tackle a sequence of SAT instances,
in which each following instance is formed by extending the
previous instance by adding to it new clauses and possible
new variables. Thanks to this one can reuse the information
accumulated by the solver throughout the process to improve
its performance.
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B. Maximum Satisfiability

The Maximum satisfiability problem (MaxSAT) is an op-
timization variant of SAT. For a Boolean formula in CNF
the MaxSAT problem is to maximize the number of satisfied
clauses. Due to a number of practical considerations, in
practice MaxSAT is usually considered in a slightly different
formulation called Weighted Partial MaxSAT (WPMS). The
Weighted part refers to the fact that clauses are allowed to
have weights. The Partial part instead is aimed at splitting
formula in two: the part that must be satisfied (hard clauses)
and the part that may be (partially) falsified (soft clauses). One
can view hard clauses in the context of the weighted model as
the clauses the individual weight of which exceeds the total
weight of all soft clauses.

There are two main classes of MaxSAT solving algorithms:
complete and incomplete. Complete algorithms make it possi-
ble to construct provably optimal solutions to the optimization
problem at hand and it is the complete algorithms that employ
SAT solvers. Incomplete algorithms, on the other hand, are
designed in such a way as to quickly find a solution which
is quite good, and then use the allotted time to improve it (if
possible). One notable example of incomplete algorithms for
MaxSAT which is also employed in the context of SAT solving
are the Stochastic Local Search algorithms. Generally, they
do not employ any inference rules like SAT solvers, instead,
they explore the space of possible assignments of variables of
a formula, but they do it with insane speed, checking up to
billions of assignments per second. The recent advancements
in MaxSAT solving actually focus mostly on incomplete algo-
rithms and also on ways to efficiently combine fast incomplete
methods for finding approximations of a solution with the
ability of complete methods to find an optimum.

So, a MaxSAT instance is a weighted CNF: a CNF in which
some clauses are hard, e.g. they must be satisfied, and the
remaining clauses are soft and are assigned some weights.
The goal is to find an assignment of variables that satisfies all
hard clauses and maximizes the sum of weights of satisfied
soft clauses.

The state-of-the-art MaxSAT solvers rely on two techniques
to employ SAT oracles: selector literals and cardinality con-
straints [13]. An individual selector literal is added to each soft
clause. For example, if there is an original clause aVbVe, it is
modified to a VbV cV s;. By assigning s; = 1 the algorithm
can specify that this clause is already satisfied and can be
excluded from consideration (e.g. when invoked on a CNF
with this clause, the SAT oracle will search for a solution that
does not have to satisfy it). Vice versa, by fixing s; to 0 the
SAT oracle will have to satisfy this clause. The cardinality
constraints technique allows to represent in SAT form the
[in]equalities of the kind x1 + z2 + ... + 2, [<, >, =] K.

It is easy to use the two described techniques to construct the
following straightforward SAT-based algorithm for MaxSAT.
First, introduce selector literals to all soft clauses in an input
weighted CNF. Next, set the value of auxiliary variable £ to
1. Encode the cardinality constraint over selector variables so
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that it enforces that the sum of weights of all satisfied soft
clauses is at least k. Then, invoke a SAT solver on the CNF
constructed by appending the encoded cardinality constraint
to CNF with selectors, if the answer is “Satisfiable” then
increment k, otherwise, k is the maximum weight that we
needed to find.

It is clear, that if we exclude SAT oracle calls, then the
algorithm is polynomial and works for at most S steps.
Thus, the use of SAT oracle constitutes the major part of the
complexity of this MaxSAT solving algorithm. Due to the fact
that the size of cardinality encodings quickly grows with the
increase of the number of variables involved, the presented
approach is not as good as more sophisticated algorithms for
MaxSAT. For an excellent tutorial on MaxSAT we refer to
online resource 2.

III. RC2 ALGORITHM FOR MAXSAT

The RC2 algorithm [5] is one of the state-of-the-art com-
plete algorithms for MaxSAT. It is implemented as a part of
the PySAT package [14]. Let us below briefly describe its main
features and the ways it interacts with a SAT oracle.

The RC2 abbreviation means Relaxable Cardinality Con-
straints. It is a core-guided MaxSAT solver, meaning that its
functioning revolves around the so-called unsatisfiable cores.
Such a core is formed by a subset of clauses that are re-
sponsible for a SAT instance being unsatisfiable. In particular,
RC2 employs the selector variables in a manner similar to that
of the algorithm described above, but constructs cardinality
constraints only for selector variables from unsatisfiable cores.

RC2 heavily relies on the incremental capabilities of an
employed MiniSat-like [15] SAT oracles: the extraction of
an unsatisfiable core is performed via the assumptions mech-
anism (see [12]), the manipulation of cardinality constraints
is implemented via the use of iterative cardinality encodings,
such as incremental Totalizer encoding [16], [17], etc. Since
we do not aim to explain RC2 in detail, for particulars
regarding the inner workings of the algorithm refer to [5]. As
it was already mentioned, the goal of the present paper is to
study how the RC2 handles the SAT oracles. Let us consider
it in detail in the following sections.

IV. ANALYSIS OF RC2 INTERACTION WITH SAT ORACLE

RC2 performs SAT oracle calls in 4 procedures °:

e compute_ — the main procedure that seeks to find the
solution to the optimization problem

e trim_core — the procedure used to reduce the size of
a recently extracted unsatisfiable core.

e exhaust_core — the procedure used to exhaust an
unsatisfiable core by attempting to increase its cost

e minimize_core — the procedure used to invoke a
SAT oracle with a tight conflict budget in order to
reduce an extracted unsatisfiable core via a deletion-based
algorithm.

Zhttps://ecai20-maxsat-tutorial.github.io/
3https://github.com/pysathg/pysat/blob/master/examples/rc2.py
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Fig. 1. Cactus plot for considered solvers on unweighted benchmarks
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Fig. 2. Cactus plot for considered solvers on weighted benchmarks

Apart from the mentioned methods, one of the major
heuristics in the algorithm is the detection of intrinsic AtMostl
constraints, implemented in the adapt_aml method.

Note, that there are two baseline versions of RC2: RC2-A
and RC2-B, which differ in how they reduce the unsatisfiable
cores. Usually, the RC2-B version performs slightly better
than the other.

A. Experimental Setup

All experiments were run on a PC with AMD Ryzen 5900x
CPU (12 cores) and 80 GB RAM, working under the Ubuntu
22.04 OS. In all cases 12 threads were running simultaneously.
In the role of benchmarks we initially picked the suite of
instances from the weighted and unweighted categories of
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TABLE I

STATISTICS ON THE RUNTIME OF PROCEDURES IN RC2 WITH DIFFERENT SAT ORACLES ON UNWEIGHTED BENCHMARKS

Parsing Compute Adapt AM1 Minimize Exhaust Trim
abs rel abs rel abs rel abs rel abs rel abs rel
RC2-A-Glucose3
mean 2412 0.308 42.815 0.268 1.636 0.145 0.000 0.000 45.771 0.238 | 0.000  0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 124.644  1.000 | 3146.778 1.000 | 69.196  0.998 0.001 0.003 1994.739  0.991 | 0.002  0.004
median 0.111 0.139 0.099 0.107 0.009 0.016 0.000 0.000 0.083 0.099 | 0.000 0.000
RC2-B-Glucose3
mean 3.093 0.276 47.783 0.219 2.016 0.120 29.067 0.230 35.919 0.132 | 0.000  0.000
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 105.170  1.000 | 2732.359 0.999 | 70.783 0.998 | 3298.355 0.996 | 2967.639 0.990 | 0.004 0.003
median 0.122 0.104 0.102 0.048 0.009 0.011 0.165 0.082 0.052 0.030 | 0.000 0.000
RC2-C-Glucose3
mean 3.066 0.285 47417 0.217 2.019 0.117 28.459 0.227 35.361 0.131 | 0.000  0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 104.207  1.000 | 2696.451 0.999 | 71.387 0.998 | 3255.592 0.995 | 2852.446 0.989 | 0.004 0.004
median 0.123 0.108 0.096 0.046 0.009 0.009 0.163 0.081 0.048 0.029 | 0.000 0.000
RC2-A-Maplechrono
mean 1.204 0.222 38.834 0.313 1.583 0.113 0.000 0.000 56.555 0.328 | 0.000  0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 21.962 1.000 | 2391.076  0.998 | 70.024  0.998 0.001 0.002 | 3175.744 0.996 | 0.001 0.003
median 0.117 0.033 0.746 0.128 0.008 0.002 0.000 0.000 0.481 0.174 | 0.000 0.000
RC2-B-Maplechrono
mean 1.453 0.202 39.783 0.273 1.807 0.102 22.033 0.158 39.587 0.247 | 0.000 0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 64.954 1.000 | 2957.176  0.994 | 69.389  0.998 | 3261.089 0.989 | 2835.435 0.994 | 0.004 0.003
median 0.118 0.034 0.534 0.061 0.009 0.003 0.210 0.040 0.341 0.065 | 0.000 0.000
RC2-C-Maplechrono
mean 1.448 0.203 30.737 0.270 1.830 0.103 21.636 0.160 38.625 0.247 | 0.000 0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 67.389 1.000 | 2283.725 0.993 | 69.466 0.998 | 3274200 0.988 | 2685.708 0.994 | 0.004 0.003
median 0.117 0.035 0.475 0.061 0.009 0.003 0.223 0.042 0.304 0.060 | 0.000 0.000
RC2-A-Mergesat3
mean 2.316 0.273 37.163 0.307 1.650 0.126 0.000 0.000 45.214 0.266 | 0.000 0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 131.545 1.000 | 3075.583 1.000 | 68.049  0.998 0.001 0.003 | 2886.466 0.996 | 0.002 0.004
median 0.122 0.092 0.209 0.138 0.009 0.007 0.000 0.000 0.159 0.130 | 0.000  0.000
RC2-B-Mergesat3
mean 1.975 0.237 48.584 0.248 2.068 0.112 23.784 0.221 29.989 0.163 | 0.000 0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 81.939 1.000 | 2362.645 0.994 | 72.766  0.998 1445.034  0.995 1685.072  0.989 | 0.005 0.004
median 0.123 0.061 0.225 0.063 0.009 0.006 0.203 0.075 0.103 0.039 | 0.000 0.000
RC2-C-Mergesat3
mean 1.972 0.237 48.436 0.247 2.009 0.111 23.959 0.222 30.120 0.163 | 0.000  0.000
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000 0.000
max 81.227 1.000 | 2378.219 0.995 | 71.547 0.998 1445.101  0.995 1729.190  0.989 | 0.005 0.003
median 0.122 0.066 0.236 0.062 0.010 0.007 0.195 0.074 0.097 0.040 | 0.000 0.000

MaxSAT Evaluation 2021 4. Then we ran RC2-B with Glucose
3 as SAT oracle (which is standard) on these instances with the
time limit of 3600 seconds and collected only the benchmarks
on which it terminated during this time (either by successfully
solving them or due to some unexpected behavior).

B. Evaluating the Contribution of RC2 Procedures to Runtime

Our main goal is to assess how much each of the procedures
contributes to runtime. Of particular interest are the time
required for parsing and for extracting intrinsic AtMost 1
constraints, since both procedures are actually implemented in
Python, and Python is well known for not being as efficient as
e.g. C or C++ when it comes to resource-intensive operations.
Apart from that, it is interesting to see how the SAT oracle

“https://maxsat-evaluations.github.io/2021/
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use, runtime-wise, is split between the main (compute_)
procedure and the heuristics.

To study the considered details we launched RC2 in three
configurations: standard two: RC2-A and RC2-B and also
RC2-C which enables heuristics employed in both configu-
rations. We also decided to see whether the behavior differs
depending on what solver is employed as a SAT oracle. Thus,
in the role of the latter we considered three solvers supported
by PySAT:

e Glucose 3 — the baseline RC2 solver

e Maplechrono — the MapleLCMDistChronoBT solver that
won in SAT Competition 2018

o Mergesat 3 — the MergeSAT solver [18] which is a main-
tained project aiming at preserving the MiniSat/Glucose
legacy.
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STATISTICS ON THE RUNTIME OF PROCEDURES IN RC2 WITH DIFFERENT SAT ORACLES ON WEIGHTED BENCHMARKS

TABLE I

Parsing Compute Adapt AM1 Minimize Exhaust Trim
abs rel abs rel abs rel abs rel abs rel abs rel
RC2-A-Glucose3
mean 6.707 0.428 36.792 0.173 4.179 0.145 0.000 0.000 49.731 0.228 0.365 0.008
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 400.178  1.000 | 2894.375 0.982 | 427.359  0.998 0.007 0.001 2562.246  0.985 42.600 0.157
median 0.148 0.339 0.028 0.061 0.008 0.010 0.000 0.000 0.028 0.051 0.000 0.001
RC2-B-Glucose3
mean 5.146 0.349 40.586 0.129 3.934 0.121 61.825 0.315 25.773 0.076 0.000 0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 365.097 1.000 | 3024.803 0.990 | 429.336  0.998 | 3026.639 0.976 | 1491.174 0912 0.010 0.001
median 0.134 0.148 0.024 0.026 0.008 0.008 0.192 0.166 0.013 0.023 0.000 0.000
RC2-C-Glucose3
mean 5.075 0.354 28.677 0.124 4.003 0.121 58.463 0.317 22.642 0.071 0.257 0.004
min 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 417.002  1.000 | 3028.002 0.961 | 430.930 0.998 | 3132.125 0.983 1446.559  0.851 28.443 0.058
median 0.144 0.152 0.022 0.026 0.008 0.007 0.178 0.154 0.011 0.024 0.001 0.001
RC2-A-Maplechrono
mean 5.857 0.333 36.605 0.205 4.284 0.123 0.000 0.000 42.201 0.318 1.017 0.009
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 390.325  1.000 | 1776.640 0.992 | 451.236  0.998 0.009 0.001 1779.656  0.985 105.256  0.186
median 0.135 0.120 0.169 0.070 0.008 0.007 0.000 0.000 0.238 0.150 0.001 0.001
RC2-B-Maplechrono
mean 5.163 0.294 21.111 0.163 3.939 0.106 51.758 0.265 27.412 0.166 0.000 0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 368.242  1.000 758911 0.986 | 437.650 0.998 | 2236.522 0.952 | 1541.358 0.985 0.019 0.001
median 0.139 0.086 0.099 0.030 0.008 0.005 0.318 0.086 0.089 0.052 0.000 0.000
RC2-C-Maplechrono
mean 5.818 0.293 18.685 0.158 4.098 0.105 49.057 0.260 26.567 0.171 0.455 0.006
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 439.520 1.000 | 1013.682 0.987 | 435952 0.998 | 2436.954 0.948 1229.961  0.956 39.269 0.154
median 0.144 0.091 0.094 0.031 0.008 0.005 0.337 0.089 0.100 0.049 0.001 0.001
RC2-A-Mergesat3
mean 6.021 0.374 36.492 0.206 4.295 0.133 0.000 0.000 55.229 0.254 1.548 0.018
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 377.585 1.000 | 1602.950 0.976 | 452.126  0.998 0.010 0.001 1941.928  0.986 83.650 0.355
median 0.140 0.197 0.066 0.099 0.009 0.010 0.000 0.000 0.052 0.110 0.003 0.003
RC2-B-Mergesat3
mean 5.304 0.309 41.213 0.154 3.971 0.112 75.073 0.313 42.450 0.104 0.000 0.000
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 372215 1.000 | 2816.565 0.983 | 444.320 0.998 | 2693.492 0.976 | 3079.620  0.955 0.028 0.001
median 0.132 0.107 0.057 0.034 0.009 0.006 0.343 0.146 0.032 0.032 0.000 0.000
RC2-C-Mergesat3
mean 6.051 0.312 36.214 0.155 4.063 0.110 80.054 0.298 40.218 0.106 2.291 0.010
min 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 435943  1.000 | 2626.575 0.975 | 452.325 0.998 | 2553.352 0957 | 2854.320 0.965 | 263.884 0.323
median 0.136 0.104 0.077 0.032 0.009 0.006 0.300 0.129 0.032 0.031 0.005 0.003

They represent a progression of sorts, since Maplechrono can
be viewed as the solver incorporating all Glucose 3 heuristics,
and Mergesat3 as the one incorporating all heuristics from
both Glucose3 and Maplechrono.

The results of the experiments are summarized in Tables I,
II, and also in Figure 1, 2 split in accordance with the class of
benchmarks, unweighted for Table I and Figure 1 and weighted
for Table II and Figure 2. The columns of the tables contain the
measurements of runtime in seconds in abs column (absolute)
and relative to the total runtime of the solver in table rel. The
statistics are presented only for the benchmarks that have been
successfully solved by each solver variant. As it will be seen
later, they solved similar portion of benchmarks overall, thus
making the comparison fair.

In fact, the variance in the absolute values in the parsing
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column is mainly due to slight runtime variations due to the
use of different CPU cores, since the parser implementation is
independent from the SAT oracle. However, we decided that it
will be better to leave it in the Tables to better see the overall
picture.

1) Cactus plots: Figures 1 and 2 contain the so-called
cactus plots. To draw it, the runtimes of each algorithm
over solved benchmarks are ordered in an increasing order
(independently from other algorithms) and plotted as a line.
It means, that the further to the right the line goes — the
more benchmarks have been solved and the closer it is to the
horizontal axis — the smaller is the average runtime. From the
plots it is clear that indeed, the RC2—-2 configurations perform
the worst, while configurations RC2-B and RC2-C are quite
similar. Another interesting fact is that Glucose3 as a SAT

MIPRO 2023/AIS



oracle outperforms both Mergesat and Maplechrono, however,
not by much, since for the vast majority of benchmarks (about
350 unweighted and 400 weighted) all variants perform more
or less the same.

2) General observations: From the median values in both
tables it is clear, that typically, the SAT oracle calls in RC2 are
very short, but their number is significant. It means that instead
of focusing on heuristics that help solving large and hard SAT
instances (as the SAT competition solvers do), the SAT oracles
employed by RC2 are better off with heuristics targeting easy
instances, possibly, taking into account the peculiar features
of cardinality encodings employed by the algorithm.

3) Parsing: Let us look at the absolute and relative values
of the time required to parse the problems. It is quite surprising
to see that with the (absolute) mean time 2.4 seconds for
unweighted benchmarks and about 5 seconds for weighted
benchmarks, in relative terms parsing takes from 20 to 35
percent of overall runtime. One of the reasons for this be-
havior is that the average runtime of RC2 on the considered
benchmarks is quite small. Nevertheless, it is highly likely
that implementing RC2 in a language that will allow to make a
better parser can easily yield a large average runtime reduction.

4) Adapt AM1: 1t is also quite curious to see how much the
adaptation of intrinsic Atmostl constraints can take: up to 400
seconds, and it takes from 10 to 15 percent on average. Here
we can only repeat what was already mentioned with regards
to parsing: that the Python implementation is likely hindering
the performance of the algorithm in this particular procedure.

5) Compute, Exhaust and Minimize: The most surprising
revelation for us was that the main procedure, that aims to
solve the problem, actually takes only up to a third of total
runtime on average. In fact, the Exhaust procedure in almost all
cases appears to take more time than compute. The same goes
for the Minimize procedure, which, surprisingly, takes more
time on weighted benchmarks and less time on unweighted
ones. Overall, treating the Compute procedure as the main
one is mostly a misconception, since in the case of RC2 all
three procedures take more or less the same amount of time.

6) Trim: The Trim procedure is not enabled in RC2-B,
it works only in the other two configurations. Nevertheless,
from the tables is is clear that it takes the least amount of
time, usually negligible, however, it potentially can improve
the performance of the solver in general.

7) Variations depending on the solver used as SAT oracle:
From the vast amount of information in the Tables it is
hard to quickly grasp the discrepancies that are produced
by using a different SAT solver as an oracle, but they are
there. For example, while the mean time spent on Compute
and Exhaust by Maplechrono is smaller than that by the
other two solvers, the median time is actually several times
larger, meaning that more often than not the corresponding
SAT oracle calls take more time. Apparently, this is the main
reason why Maplechrono variants lack in performance as it
can be seen from the cactus plots. Overall, the median times
for Glucose 3 are the smallest, with Mergesat3 lagging slightly
behind. Understanding the reasons behind the better behavior
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of Glucose 3 and behind the bad one by Maplechrono in the
main procedures of RC2 may well be the key for finding
further improvements to the algorithm.

V. CONCLUSIONS AND FUTURE WORK

In this paper we studied the RC2 algorithm for solving
MaxSAT from the SAT oracle perspective. The gathered
statistics shed a lot of light on the interconnection between
the algorithm and the employed SAT oracles and made it
possible to outline a number of possible venues that may
enable improving the RC2 performance on average. These
venues include implementing RC2 in C/C++ or at least taking
measures towards drastically decreasing the time required
to read WCNF; implementing Adapt AMI1 heuristic in a
SAT solver to reduce its runtime; tuning SAT solvers for
good performance on easy instances instead of focus on hard
instances characteristic for SAT competition solvers.
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