
Speeding up the Solving of Logical Equivalence
Checking Problems with Disjunctive Diagrams

Victor Kondratiev1, Ilya Otpuschennikov2, Alexander Semenov1
1 ITMO University, St. Petersburg, Russia

2 Matrosov Institute for System Dynamics and Control Theory SB RAS, Irkutsk, Russia
Emails: vikseko@gmail.com, otilya@yandex.ru, biclop.rambler@yandex.ru

Abstract—In the context of the problem of checking the
equivalence of Boolean circuits (LEC), we propose an approach
that increases the efficiency of modern SAT solvers on this
problem by generating additional constraints of a special kind. To
generate such constraints, we use a variant of decision diagrams
called disjunctive diagrams. In contrast to well-known Binary
Decision Diagrams these diagrams can be constructed effectively
for an original formula and can also be used to extend the
original CNF formula with new clauses which are its logical
consequences. In computational experiments, we show that the
resulting formulas, encoding difficult LEC variants, extended by
the generated constraints are often significantly easier to solve for
state-of-the-art SAT solvers compared to the original formulas.

Keywords—Boolean satisfiability problem; Logical Equivalence
Checking; Disjunctive Diagrams; Multipliers

I. INTRODUCTION

Boolean circuits are one of the basic objects of modern
computer science in both theoretical [1], [2] and practical [3],
[4] senses. Verification of Boolean circuits is considered to be
a very important direction in such industrial area as Electronic
Design Automation (EDA). In this paper we consider a well-
known problem from EDA referred as Logical Equivalence
Checking (LEC). One of the main computational tools for
solving LEC are SAT solvers. Unfortunately, there are many
examples of well-known functions that give LEC problems
in SAT form which are very hard for all state-of-the-art SAT
solving algorithms. In such situations the ways which provide
opportunity to improve the efficiency of SAT solvers on such
extremely hard instances are required. For instance, different
preprocessing techniques can be applied for this purpose.

In this paper we propose a preprocessing technique based
on the notion of Disjunctive Diagrams [5]. The main goal
of our paper is to develop a corresponding technique and to
argue its efficiency in application to some extremely hard LEC
problems in form of SAT instances. We achieve this purpose,
describing corresponding algorithms, and using equivalence
checking problems for several different algorithms performing
multiplication of integer numbers in the role of benchmarks.

Let us give a brief overview of the paper. The next sec-
tion contains the basic definitions and results necessary for
understanding the rest of the paper. Section III presents the
description of main novel developed algorithms. In particular,
we mean a basic preprocessing algorithm which constructs

new additional constraints using which we decrease SAT
solver runtime on considered benchmarks.

Also we discuss here, how we can use a special SAT
partitioning based technique to estimate the hardness of ex-
tremely hard LEC instances in SAT form. In the experimental
part we present the results of computational experiments and
we can see, that the proposed method is able to cope with
extremely hard LEC in SAT form outperforming the standard
approach by 5 − 14%. It should be noted that these results
are successful, taking into account the well-known extreme
hardness of formulas encoding LEC for multipliers.

II. PRELIMINARIES

By {0, 1}K we denote the set of all binary words (also
called Boolean vectors) of length K. Let F be an arbitrary
Boolean formula [6] over set of variables X , |X| = K. The
formula specifies a Boolean function ϕF : {0, 1}K → {0, 1},
which is defined on whole set {0, 1}K . The function ϕF is
defined by substituting values of Boolean variables from X
into F in the standard sense [7]. Vectors from {0, 1}K , which
are sets of values of variables from X , are called assignments
of these variables. An arbitrary assignment α ∈ {0, 1}K such
that the following holds: ϕF (α) = 1, is called a satisfying
assignment for formula F . If F has a satisfying assignment
then F is called satisfiable, and the formula is unsatisfiable if
does not exist any satisfying assignment for F . The Boolean
Satisfiability Problem (SAT) requires for an arbitrary Boolean
formula F to determine if this formula is satisfiable. This
problem is NP complete and it is NP-hard if, besides checking
satisfiability, we would like to find some satisfying assignment
in case when the formula is satisfiable.

It is well-known that the problem of checking the satisfi-
ability of an arbitrary Boolean formula F can be reduced in
polynomial time to the problem of checking the satisfiability
of some Conjunctive Normal Form (CNF) C, using Tseitin
transformations [8]. Hereinafter, when mentioning SAT we
will assume the problem of checking the satisfiability of an
arbitrary formula in a CNF.

A huge amount of combinatorial problems from a variety
of industrial areas: program analysis, computer security, crypt-
analysis, bioinformatics, combinatorics, etc. are effectively
reduced to SAT. However, one of the main applications of
modern SAT solvers for more than 20 years continues to
be Electronic Design Automation (EDA). Within EDA, SAT

1184 MIPRO 2023/AIS

solvers are used to solve the Logical Equivalence Checking
(LEC) problem and directly related Automated Test Pattern
Generation (ATPG) problem. The LEC problem is usually
considered for two Boolean circuits.

Let us remind [9], that Boolean circuit Sf is mathematically
interpreted by some directed graph (V,A), V is set of vertices
and A is set of arcs. V contains n vertices without parents,
these vertices are called inputs of Sf and we denote their set
by V in, also V contains m vertices without children, these
vertices form set V out and are called outputs of Sf . Each
vertex in V \ V in is assigned some Boolean connective from
some basis. The vertices from V \ V in are called gates. Let
us further consider the complete basis {¬,∧} everywhere and
call the graph representing the corresponding circuit the And-
Inverter Graph (AIG) [10].

On a circuit Sf we can define a procedure for its interpre-
tation on an arbitrary input vector α ∈ {0, 1}n, which consists
of successive computation of values of Boolean functions
associated with all gates, which are topologically sorted w.r.t.
structure of corresponding graph. The result of interpreting Sf

on α is a vector γ ∈ {0, 1}m and thus Sf specifies a (total)
discrete function of kind f : {0, 1}n → {0, 1}m.

Let us return to LEC problem. This problem is formulated in
the following manner: given two circuits Sf and Sh, both with
n inputs and m outputs. Answer the question: is it true that Sf

and Sh actually specify the same function, i.e. the following
point-wise equality holds: f ≡ h? In case of answer ’yes’
for this question, the circuits Sf and Sh are called equivalent
(Sf ≡ Sh).

It is well-known fact that LEC problem is efficiently (in
polynomial time of the length of descriptions of circuits
Sf and Sh) reduced to SAT [4], [11]. To do this, a new
circuit is constructed from circuits Sf , Sh: for each pair of
identical inputs (with the same natural number) these inputs
are glued together, and each pair of identical outputs is
combined by additional XOR gate, after which the outputs
from all m such XOR gates are fed to the gate linking them
by disjunction. The block consisting of XOR gates and the
resulting disjunction is called a miter [4], see Figure 1. The
constructed circuit, denoted by SM(f,h), defines a Boolean
function ΦM(f,h) : {0, 1}n → {0, 1}. The CNF CM(f,h) is
constructed for SM(f,h) using Tseitin transformation. It can
be shown that the CNF CM(f,h) is unsatisfiable if and only if
the original circuits are equivalent.

Unfortunately, CNF CM(f,h) can turn out to be extremely
hard for all state-of-the art SAT solvers. Such situations are
typical for a number of circuits defining well-known arithmetic
functions, e.g., multiplication functions for natural numbers.
Such circuits are called multipliers. It is well-known fact that
the LEC problem in SAT form for two multipliers is extremely
hard for the best SAT which won in SAT solvers competitions
conducted annually. As a consequence, in some recent works
instead LEC the problems of identification of multipliers are
considered: in the framework of this approach the problem
to recognize if the considered circuit implements multiplier is
studied. Such an approach gives the possibility to work with

Sf Sh

+ +

OR

Miter

Inputs

Outputs

Fig. 1. LEC constructed by two circuits Sf and Sh with miter.

multipliers of significantly higher dimension comparing with
LEC approach [12], [13], [14], [15]. In our study we consider
only LEC approach to verification of multipliers.

Often when dealing with such hard problems it is not even
possible to predict the SAT solver running time a priori, and
this is a serious problem of its own. To solve this problem,
in [16] was proposed an approach based on decomposition
hardness notion. In [17] ideas from [16] were transferred to
hardness estimation of hard LEC in form of SAT instances,
exploiting information about structure of considered circuits.
This technique from [17] will be used further to estimate
hardness of LEC in SAT form for two multipliers when
we augmented our CNF encoding of considered LEC with
some additional information, obtained using preprocessing
techniques, based on decision diagrams of special kind.

Specifically, we will use further so-called Disjunctive Dia-
grams, introduced in [5]. Let us briefly recap their main point.
A DisJunctive Diagram (DJD) is constructed by an arbitrary
formula in disjunctive normal form (DNF) and the diagram
is essentially Shannon bracket representation of considered
DNF in form of directed graph. Using arbitrary CNF C, we
construct DNF D = ¬C, and then using D we construct DJD
R(D) representing it. It is important that R(D) is constructed
in polynomial time of length D. An arbitrary diagram R(D)
has two terminal vertices: vertex ’1’ and vertex ’?’. The
diagram R(D) in contrast to the well-known ROBDD [18]
and ZBDD [19] is not binary and can have more than one
root.

Each path in R(D) from some root to terminal vertex
’1’ corresponds to a particular conjunction of literals in D.
An arbitrary path π from some root to terminal ’?’ defines
an assignment απ over some set of variables Xπ ⊆ X
(hereinafter, X the set of variables over which the original
CNF formula C is specified). Next, we show how the path
properties in R(D) in terminal vertex ’?’ can be used to
generate additional constraints using which we can improve
the performance of SAT solver in application to extremely
hard LEC instances.

Figure 2 shows DNF and the corresponding disjunctive
forest (left) and the disjunctive diagram (right) constructed

MIPRO 2023/AIS 1185

D = (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ ¬x3 ∧ ¬x4) ∨ (¬x2 ∧ ¬x3) ∨ (x2 ∧ x4) ∨ (¬x3 ∧ x4) ∨ x4

x
2

x
3

x
3

x
4

x
2

x
3

x
3

x
4

x
4

? 1?1? ?

1? ? ? ?1 1

1?

x
1

x
2

x
3

x
4

x
3

x
3

x
4

x
4

? 1

?

x
2

x
1

Fig. 2. DNF D with Disjunctive forest F (D) (left) and DJD R(D) (right) for it.

with the order x1 < x2 < x3 < x4.

III. HARDNESS ESTIMATIONS OF EXTREMELY HARD LEC
INSTANCE AND DISJUNCTIVE DIAGRAMS BASED

PREPROCESSING

So, let C be a CNF formula encoding some extremely hard
LEC instance. As noted above, on such formula a modern SAT
solver A can work indefinitely long and, unfortunately, this
time cannot be predicted with the necessary accuracy in the
general case. However, it is possible to construct an estimate of
the hardness of formula C using the ideas from the article [16].
Let us recall that in [16] it was proposed to estimate the hard-
ness of C w.r.t. A and some plain partitioning [20] of formula
C, and this approach is close in sense of idea to one from [21]
to use the notion of backdoor [22] to evaluate the hardness of
arbitrary Boolean formula. Corresponding hardness measure is
referred as decomposition hardness (d-hardness) or hardness
w.r.t. SAT partitioning. In [17] we described one particular
construction of SAT partitioning that can be used to evaluate
the hardness of CNF formulas encoding namely some LEC
instances. Let us give its brief description.

So, consider LEC for two Boolean circuits Sf and Sh, as
well as miter-circuit SM(f,h) and construct for this circuit CNF
formula CM(f,h) over set of variables X . Denote by Xin,
Xin ⊆ X set of variables associated with inputs of Sf ,Sh and
SM(f,h) when transition from SM(f,h) into CM(f,h) happens.
For some natural k : 2 ≤ k < n let us split Xin into q = ⌈n

k ⌉
disjoint subsets, where:

n = k⌊n
k
⌋+ r, r ∈ {0, 1, ..., k − 1}

Let us denote the corresponding subsets Xj , j ∈ {1, . . . , q},
and suppose that for each j ∈ {1, . . . , ⌊n

q ⌋} we have |Xj | = k,
and in case r ̸= 0 the following condition holds: |X⌈n

k ⌉| =
r. We associate two Boolean functions with each Xj : some
function λj : {0, 1}|Xj | → {0, 1} and its negation ¬λj . Let
ϕ1

j and ϕ2
j be Boolean formulas in CNF specified functions

λj and ¬λj respectively, and ϕj be a formula which can be in
different moments both formulas ϕ1

j and ϕ2
j . It is obvious,

that there exist 2⌈
n
k ⌉ different formulas of kind:

ϕ1 ∧ ... ∧ ϕ⌈n
k ⌉

The main fact established in [17] is that this family consisting
of 2⌈

n
k ⌉ formulas is SAT partitioning of formula CM(f,h).

Experiments show that picking up functions of kind λj and
¬λj carefully, we can have the situation when formulas of
kind:

ϕ1 ∧ ... ∧ ϕ⌈n
k ⌉ ∧ CM(f,h) (1)

are significantly simpler for SAT solver A comparing with
original formula CM(f,h).Then hardness of CM(f,h) w.r.t. A
and SAT partitioning

P =
{
(ϕ1 ∧ ... ∧ ϕ⌈n

k ⌉)i

}2⌈
n
k

⌉

i=1

can be specified (by analogy with [16]) as summary runtime
of algorithm A for all formulas of kind (1). Let us denote this
measure µA,P (CM(f,h)). Arguing by analogy with [16], it is
easy to show that following equation holds:

µA,P (CM (f, h)) = 2⌈
n
k ⌉ · E[ξP]

where ξP is random variable associated with P in manner
similar to one from [17]. But then we can estimate the value
µA,P (CM(f,h)) estimating expectation E[ξP] using the Monte
Carlo method [16], [17].

The described method of estimating the hardness of for-
mulas turns out to be very useful for understanding the
effectiveness of various techniques that speed up SAT solvers
in application to extremely hard SAT instances (when we
cannot predict the runtime of conventional SAT solver A).
We use the method of hardness estimation just described to
investigate how efficient the preprocessing method can be
for hard formulas of the kind CM(f,h), when one harnesses

1186 MIPRO 2023/AIS

disjunctive diagrams to this preprocessing. Let us describe
corresponding method.

Let us return to diagram R(D) constructed for DNF formula
D = ¬C, where C is some CNF formula over variables X ,
and consider an arbitrary path π which is passed from some
root vertex to terminal vertex ‘?’. Use the notations introduces
above: Xπ and απ . Denote Ωπ the set of all assignments
of variables from X which coincide with απ in values of
variables from Xπ , thus,

|Ωπ| = 2|X|−|Xπ|

Let Π? be the set of all paths in terminal vertex ‘?’ in R(D).
From the basic properties of disjunctive diagrams it follows
that the value |Π?| is bounded above by some polynomial of
size of formula C in general case.

Leading by [5], it is not hard to see that formula C
is unsatisfiable if and only if formula of kind C(απ) is
unsatisfiable for any π ∈ Π?, where by C(απ) is denoted
formula which is result when substituting assignment απ of
variables from Xπ into C. Starting from this point, let us
establish the following fact.

Statement 1. Consider an arbitrary π ∈ Π?. If formula C(απ)
is unsatisfiable, then clause obtained by negation of απ is
logical entailment of formula C.

Proof sketch. Let C(απ) be unsatisfiable and ∆(απ) be the
clause obtained by negation of απ: e.g. let απ be x10 =
1, x18 = 0, x27 = 1, then we represent απ as the follow-
ing conjunction of literals: x10 ∧ ¬x18 ∧ x27. Accordingly,
∆(απ) = (¬x10∨x18∨¬x27). If α is some satisfying assign-
ment for C, then α can not coincide with απ in corresponding
literals (otherwise we have contradiction with the fact that α
satisfies C). This fact means that C → ∆(απ).

The established fact, despite of its simplicity, gives us a
simple way to construct additional constraints which can be
used to augment the original formula C, hoping to reduce
the search space for algorithm A. We can consider formulas
of kind C(απ) for all π ∈ Π? (keeping in mind that fact,
that |Π?| is bounded by polynomial of formula C description
size). To each formula C(απ) we will apply SAT solver A.
Corresponding SAT problems can be extremely hard, and
consequently we can launch A with some fixed time limit t.
And from all said above it follows that clauses of kind ∆(απ),
if it managed to construct them in time ≤ t, can be very useful
due to prohibition by them some prospective search directions
for algorithm A.

IV. COMPUTATIONAL EXPERIMENTS

This section presents the results of computational experi-
ments on the application of DJD-preprocessing to hard LEC
problems.

We conducted computational experiments on the ”Aca-
demician V.M. Matrosov” cluster of Irkutsk Supercomputer
Center [23].

TABLE I
COMPARISON OF DECOMPOSITION HARDNESS ESTIMATES OF INSTANCE

CvK WITH DJD-PREPROCESSING BY DIFFERENT ORDERS

Order Average time to
solve subproblems (s.)

Estimate of d-hardness
after preprocessing (s.)

Direct 30.29 1 985 085
Frequency 29.68 1 945 108
Random 1 30.06 1 970 013
Random 2 29.78 1 951 663
Random 3 29.95 1 962 804
Random 4 29.75 1 949 696
Random 5 30.02 1 967 391
Random 6 29.53 1 935 279
Random 7 29.93 1 961 493
Random 8 30.03 1 968 047
Random 9 29.96 1 963 459

Random 10 29.87 1 957 561

As benchmarks, as mentioned above, we considered prob-
lems encoding equivalence of different algorithms for mul-
tiplication of pairs of integers. Concretely, the following
algorithms were considered: standard ”Column” multiplier,
”Wallace tree” [24], Dadda algorithm [25], as well as ”Karat-
suba decomposition” [26]. In all cases, we considered versions
of algorithms that multiply two 16-bit numbers. Further we
will refer to corresponding benchmarks as to CvK, CvW, KvW,
DvC, DvK and DvW, by first letters of algorithms names whose
equivalence is tested in each particular problem. All these
algorithms were translated to And-Inverter Graphs, using
Transalg program tool [27], [28]. Corresponding AIGs and
supporting scripts are available in github repository1.

The main results of the experiments demonstrate that the
generating additional constraints using disjunctive diagrams
can reduce the estimated time for solving extremely hard
LEC instances in SAT form quite significantly. All estimates
were constructed in the way described in Section III, and the
following parameters of this method were used:

q = 2, X = {x1, ..., x32}, Xj = {x2j−1, x2j}, j = 1, ..., 16

The functions λj ,¬λj , where

λj = x2j−1 ⊕ x2j , j = 1, ..., 16

were used. Thus, each SAT partitioning consisted of 232/2 =
216 subproblems. The SAT solver Kissat [29] was used as
Algorithm A when we constructed the estimates.

Let us remind [5] that when constructing some disjunctive
diagram one can use different orders of variables. We gener-
ated additional constraints of kind ∆(απ) using different such
orders. Specifically, the following orders were used:

• Frequency order — order according to the frequency of
occurrence of variables in a formula;

1https://github.com/Vikseko/LEC benchmarks

MIPRO 2023/AIS 1187

TABLE II
COMPARISON OF DECOMPOSITION HARDNESS BEFORE AND AFTER

DJD-PREPROCESSING

Instance d-hardness
before prep. (s.)

d-hardness
after prep. (s.)

%
of speedup

CvK 2 178 663 1 929 530 11.4
CvW 1 418 200 1 298 746 8.4
DvC 1 302 856 1 118 082 14.1
DvK 2 301 015 2 165 651 5.8
DvW 1 595 147 — 0
KvW 2 344 223 2 215 808 5.4

• Direct order — the order that coincides with the numbers
of variables in the formula and, respectively, gates in the
circuit;

• Random order — random order of variables.
All work with disjunctive diagrams was performed using
the program PyDJD [30], which uses the software complex
PySAT [31]. The SAT solver MapleChrono [32] was used as
SAT oracle in the PySAT. The time limit for checking one
path was 0.01 seconds.

We constructed estimates of decomposition hardness before
and after DJD preprocessing in 12 different ways for each for-
mula under the following considerations: a disjunctive diagram
by direct order, by frequency order, and by 10 different random
orders. In all our experiments decomposition hardness equals
the time of sequential solving of all weakened subproblems in
corresponding partitioning.

Estimates were constructed from a random sample of 1000
subproblems. As an example, detailed results for instance CvK

are shown in Table I. Decomposition hardness of the instance
CvK, constructed by solving all 216 subproblems, was 2178663
seconds, with an average runtime of one subproblem equals
33.24 seconds.

The first column of Table I shows the order in which the
disjunctive diagram was constructed to perform preprocessing.
The second column of the table gives the average time to solve
the subproblems from the decomposition. The third column
gives an estimate of the time it would take to completely
solve the all sub-problems when performing order-specific
preprocessing. As can be seen in the table, the best estimate
was obtained for one of the random orders.

A similar study was performed for all of the problems
under consideration. In the results for each CNF, except for
DvW, an order was found whose preprocessing improves the
decomposition hardness estimation more than the other orders.

In the next experiment, a complete solving of all subprob-
lems in corresponding partitioning was performed to obtain
the exact decomposition hardness for each problem before and
after preprocessing with the best order w.r.t. found estimate for
each considered LEC problem.

Let us briefly describe Table II. The first column gives
the names of the problems under consideration. The second
column gives the decomposition hardness of the problems.

In this case, we are no longer talking about estimation, but
about the exact time it takes to solve all subproblems in
the decomposition (for corresponding calculations computing
cluster was used). The third column gives the decomposition
hardness of problems after preprocessing, in case it is better
than that given in the second column. The last column of the
table indicates how much faster the entire partitioning was
solved when DJD-preprocessing was applied. As we can see,
for 5 of the 6 pairs of multiplication algorithms considered,
preprocessing improved the decomposition difficulty of the
corresponding equivalence check problem by 5 − 14%. And
this can be considered as significant achievement for such hard
problem as LEC for two multipliers.

V. CONCLUSION AND FUTURE WORK

In the present paper we propose an approach to prepro-
cessing of extremely hard SAT instances using disjunctive
diagrams (DJD) introduced in [5]. The key feature of our
approach is that we construct new constraints, which augment
an original formula C, using different orders to construct
DJD for C. Also we use the relatively new technique [17] to
estimate the hardness of considered formulas. We demonstrate
that proposed preprocessing technique allows to improve the
state-of-the-art SAT solvers performance in application to
extremely hard formulas encoding the Logical Equivalence
Checking problem for two Boolean circuits implementing
different algorithms of integer multiplication. In the nearest
future we plan to develop preprocessing algorithms which
use DJD structure in more complete manner, rearranging the
diagram due to exclusion some paths in vertex ’?’ with help
of SAT oracle.

ACKNOWLEDGMENTS

We would like to express our deep gratitude to anonymous
reviewers for their valuable comments.

Victor Kondratiev and Alexander Semenov were supported
by the Russian Science Foundation, project № 22-21-00583.
Their contribution consists of theoretical base of proposed
method and development of related algorithms.

Ilya Otpuschennikov was supported by the Ministry of
Science and Higher Education of Russian Federation, research
project no. 121041300065-9. His contribution is development
of benchmarks sets, used in the experimental part of this
research.

Victor Kondratiev was also supported by a personal schol-
arship from Huawei.

REFERENCES

[1] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[2] O. Goldreich, Computational Complexity: A Conceptual Perspective.
Cambridge University Press, 2008.

[3] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in DAC, 1997, pp. 263–268.

[4] P. Molitor and J. Mohnke, Equivalence Checking of Digital Circuits:
Fundamentals, Principles, Methods. Kluwer Academic Publishers,
2004.

1188 MIPRO 2023/AIS

[5] A. A. Semenov and I. V. Otpuschennikov, “On one class of decision
diagrams,” Automation and Remote Control, vol. 77, no. 4, pp. 617–
628, 2016.

[6] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability - Second Edition, ser. FAIA. IOS Press, 2021, vol. 336.

[7] C.-L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical Theorem
Proving, ser. Computer Science Classics. Academic Press, 1973.

[8] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” Studies in Constructive Mathematics and Mathematical Logic, Part
II, pp. 115–125, 1970.

[9] I. Wegener, The Complexity of Boolean Functions. John Wiley & Sons,
1987.

[10] A. Biere, “The AIGER And-Inverter Graph (AIG) format version
20071012,” Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep.
07/1, 2007.

[11] R. Drechsler, T. A. Junttila, and I. Niemelä, “Non-clausal SAT and
ATPG,” in Handbook of Satisfiability, ser. Frontiers in Artificial In-
telligence and Applications, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. IOS Press, 2009, vol. 185, pp. 655–693.

[12] D. Kaufmann, A. Biere, and M. Kauers, “Verifying Large Multipliers
by Combining SAT and Computer Algebra,” in 2019 Formal Methods
in Computer Aided Design (FMCAD), 2019, pp. 28–36.

[13] D. Kaufmann and A. Biere, “Amulet 2.0 for verifying multiplier cir-
cuits,” in TACAS, ser. LNCS, vol. 12652, 2021, pp. 357–364.

[14] D. Kaufmann and A. Biere, “Improving AMulet2 for verifying multiplier
circuits using SAT solving and computer algebra,” International Journal
on Software Tools for Technology Transfer, 2023.

[15] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based
on And-Inverter Graphs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 9, pp. 1907–1911, 2018.

[16] A. A. Semenov, D. Chivilikhin, A. Pavlenko, I. V. Otpuschennikov,
V. Ulyantsev, and A. Ignatiev, “Evaluating the hardness of SAT instances
using evolutionary optimization algorithms,” in CP, ser. LIPIcs, vol. 210,
2021, pp. 47:1–47:18.

[17] A. A. Semenov, K. Chukharev, E. Tarasov, D. Chivilikhin, and V. Kon-
dratiev, “Estimating the hardness of SAT encodings for logical equiva-
lence checking of boolean circuits,” CoRR, vol. abs/2210.01484, 2022.

[18] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation,” IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691,
1986.

[19] S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation in Combina-
torial Problems,” in Proceedings of DAC ’93. ACM, 1993, p. 272–277.

[20] A. E. J. Hyvärinen, “Grid Based Propositional Satisfiability Solving,”
2011, PhD thesis. Aalto University publication series.

[21] C. Ansótegui, M. L. Bonet, J. Levy, and F. Manyà, “Measuring the
hardness of SAT instances,” in AAAI, 2008, p. 222–228.

[22] R. Williams, C. P. Gomes, and B. Selman, “Backdoors to typical case
complexity,” in IJCAI, 2003, pp. 1173–1178.

[23] “Irkutsk Supercomputer Center of SB RAS. URL: http://hpc.icc.ru.”
[Online]. Available: http://hpc.icc.ru

[24] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
on Electronic Computers, vol. EC-13, no. 1, pp. 14–17, 1964.

[25] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, no. 5, pp. 349–356, May 1965.

[26] D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, ser. Addison-Wesley Series in Computer Science & Infor-
mation Processing. Addison-Wesley, 1969.

[27] I. Otpuschennikov, A. Semenov, I. Gribanova, O. Zaikin, and
S. Kochemazov, “Encoding Cryptographic Functions to SAT Using
TRANSALG System,” in ECAI 2016, Frontiers of Arificial Intelligence
an Applications, vol. 285, 2016, pp. 1594–1595.

[28] A. Semenov, I. Otpuschennikov, I. Gribanova, O. Zaikin, and
S. Kochemazov, “Translation of Algorithmic Descriptions of Discrete
Functions to SAT with Applications to Cryptanalysis Problems,” Logical
Methods in Computer Science, vol. 16, no. 1, pp. 1–42, 2020.

[29] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[30] V. Kondratiev, “Using disjunctive diagrams for preprocessing of con-
junctive normal forms,” in 2022 45th Jubilee International Convention

on Information, Communication and Electronic Technology (MIPRO),
2022, pp. 883–887.

[31] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
toolkit for prototyping with SAT oracles,” in SAT, 2018, pp. 428–437.

[32] A. Nadel and V. Ryvchin, “Chronological Backtracking,” in SAT, ser.
LNCS, vol. 10929, 2018, pp. 111–121.

MIPRO 2023/AIS 1189

