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Abstract – In this paper, we propose a matrix-vector 

Boolean differential model for constructing plans of 

computational actions in solving non-procedural problems 

on a computational model of a modular software system. 

The conditions of the problem of structural synthesis of a 

program from pre-implemented modules are formulated as 

a system of Boolean differential equations, the solutions of 

which, under given initial conditions (consistent with the 

non-procedural formulation of the problem), determine the 

solvability of the problem and give constructive plans for its 

solution (including parallel ones). The proposed method of 

structural synthesis is focused on high-dimensional models. 

It allows highly efficient software implementation due to the 

high parallelism of performing vector-matrix operations on 

binary vectors at the level of machine instructions. The 

developed model is used for planning computations in 

packages of applied microservices based on the 

HPCSOMAS-MSC platform. 

Keywords – computational model; Boolean differential 

equations; abstract program; action planning 

I. INTRODUCTION 

There is a wide class of complex subject areas in 
which the process of computer solving of problems is 
represented as a step-by-step execution of modules-
procedures from the set M, working on a common field of 
variables Z, which are the actual parameters of these 
procedures. Typical representatives of software systems 
with such an organization are computing software 
packages with functional content in the form of libraries 
of autonomously compiled modules 
(subroutines/functions written in the traditional sequential 
programming languages Fortran/C), as well as tool 
environments for organizing distributed computing, which 
allows integrating geographically remote heterogeneous 
autonomous computational resources into one resource-
intensive multidisciplinary task. 

A distinctive feature of this kind of applied 
computation is as follows: the variables from Z in these 
computations act as distinguished concepts of the theory 
and concurrent parameters of the problem statement and 
therefore have applied independent semantics. Many 
problems within some applied theories consist of the fact 
that it is required to find the required quantities 

from ZB 0 , using other quantities ZA 0 whose 

values are considered known. The solution to such a 

computational problem ),( 00 BAT  (if it exists) is the 

composition of functions extracted from the 

computational model as a network of functional relations 
of the computability of quantities in the considered theory. 
It is not required to know how its constituent functions 
(i.e., modules from M) are calculated to prove the 
existence of a solution - it is enough to know only the 
names of these functions (the set of operation symbols F) 
and associated with these names the sets of input and 
output parameter names from Z. The proof of existence 
must be constructive. It means that in the course of the 
proof a problem solving plan must be constructed (an 
abstract program). 

The transformation of a plan into a specific program 
depends on the specific capabilities of the hardware and 
software of the computational environment and is not 
considered in this article. 

The article is organized in the following way. Section 
II provides a brief overview of the problem of structural 
program synthesis. Section III describes the knowledge 
base of the abstract program planner. Section IV is 
devoted to the static Boolean planning model. Section V 
contains the equations of the dynamic planning model. 
Section VI discloses the technology of applying the 
developed theoretical results on the example of a small 
computational Boolean network. Section VII describes the 
means of automating the management of computations 
based on a dynamic model. Section VIII contains a 
conclusion on the results achieved during the study. 

II. RELEATED WORK 

Automated generation of plans for solving problems in 
various subject areas is one of the main areas of research 
in artificial intelligence, which has been discussed for a 
long time in foreign and domestic literature [1]. The 
problem of obtaining abstract programs or, in other words, 
plans for computational actions on a computational 
domain model is known as the planning problem in the 
structural synthesis of programs. 

A new wave of increased interest in the idea of 
program synthesis is mainly associated with the 
understanding of the possibility of representing a synthesis 
problem in the form of a Boolean satisfiability problem [2, 
3], for which efficient algorithms for its solution are 
developed. 

Structural program synthesis is a method of 
constructing programs from pre-implemented modules 
that are treated as functions. For the first time, the idea of 
structural synthesis of programs was presented in a report 
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[4] at a conference on algorithms in modern mathematics 
and computer science, organized by A. Ershov and D. 
Knuth in 1979. More recently, this idea stimulates the 
creation of new modern integrated environments for the 
development of domain-specific software based on the 
structural synthesis of programs. For example, CoCoVila 
[5] supports visual and simulation software development 
and uses structural program synthesis to translate 
declarative specifications of simulation tasks into 
executable code. The HPCSOMAS platform [6] provides 
automated development of applied microservice packages 
(AMP) for distributed scientific computations. The 
CLAVIRE framework [7] represents a set of high-level 
tools for solving e-Science problems within the data-
driven approach. Based on iPSE (Intelligent Problem 
Solving Environment), it allows one to interact with the 
user based on domain-specific knowledge. 

The traditional planning technique in the structural 
synthesis of programs is deductive means of proving 
theorems based on the methods of mathematical logic [8]. 
Our approach to the synthesis of abstract programs (both 
parallel and sequential) is based on the systematic use of 
binary dynamical systems as the main formalism of the 
internal representation for the computational domain 
model. The search for a plan under these conditions is 
reduced to constructing particular solutions for such 
dynamical systems. AI planning languages are not 
considered in this paper. 

III. PLANNER KNOWLEDGE BASE 

As the knowledge base (KB) of the planner, the 

computational model ),,,( OutInZFKB  is used, where 

Z is a finite set of symbols (names) of parameters 
(attributes, values of the subject area), and F is a finite set 
of symbols of k+p arity operations (k and p, generally 
speaking, are different for different operation symbols). 

ZFIn  and ZFOut  define relationships between 

operations and parameters at the input and output, 

respectively. Each symbol of the operation FFi   of 

arity ii pk  is connected to the set ZFin i )( from ik  of 

input parameters and a set ZFout i )( from ip of output 

parameters associated with it. In terms of content, the 

operation FFi  implies the possibility of calculating 

variables )( iFout  from variables )( iFin  using some 

program module iM from the library of modules M. 

It is assumed that the KB has a high level of internal 
parallelism and is redundant in the sense that only a part 
of the operations from F is used to solve the problem, and 
(or) the problem T has several alternative solution plans. 

Relationships of both In and Out are conveniently 
specified as two Boolean matrices A and B with 
dimensions mn , whose elements are formed as follows: 

1ija  ( 1ijb ) if the parameter jZ is input (output) for 

the operation iF . The matrices A and B will be referred to 

as the input and output matrices, respectively. Rows of 

matrices iA  and iB are the binary representation of the set 

of input parameters )( iFin  and output ones )( iFout  of 

the operation iF , respectively. Similarly to the relations In 

and Out, it is also convenient to represent the required 
input-output relation of the problem statement 

),( 00 BAT  in the form of m-dimensional Boolean strings 

0a  and 0b , assuming that the j-th element of these strings 

takes the value equal to 1 if the parameter 
jZ is input 

(output) in the problem statement T. 

IV. STATIC BOOLEAN PLANNING MODEL 

Let us associate the parameter vectors Z and the 
operation F with the Boolean vectors z and f, the values of 

the components of which ( iz  and if ) will be determined 

as follows: 1iz , if the value of the parameter iZ  is 

known (given or calculated), and 0iz  - otherwise, 

1if , if the operation iF is executed and 0if - 

otherwise. 

Let us assume that over Boolean matrices and vectors, 
the elementwise operations of disjunction  , conjunction 
  (hereinafter, this sign is replaced by a dot or omitted 
completely), negation  , addition modulo two  , and 

implication  are defined. 

Let TA  be the matrix transposed to A. Let E be the 
column, all elements of which are equal to one. The 
symbols  and  will also mean the   and  product 

of two matrices: 

).(   where,

,   where,  

jkij
j

ik

jkij
j

ik

bacBAC

bacBAC








Taking into account the introduced notation, the 
relations reflecting the relationship of operations with 
input and output parameters can be written as a system of 
two matrix Boolean equations 


.

,

EzfB

EfzA

T 


 

A distinctive feature of system (1) is its large 
dimension and strong sparseness of the matrices A and B. 
Along with the original system we need the derivative 
from system (1), called the inverse: 


.

,

EfAz

EzBf

T 


 

In the vector-matrix form, the statement of the 

problem ),( 00 BAT  corresponds to a Boolean equation 

of the form 

 100  zbza   
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Due to the equivalence of the calculus of functional 
dependencies to a fragment of the propositional calculus, 

it is easy to show that the problem ),( 00 BAT   is solvable 

in the KB if and only if equation (3) is a logical 
consequence of the system of equations (1) in the sense 
that all solutions of system (1) are solutions of equation 
(3). 

The vector-matrix Boolean formalism of 
representation of the computational model KB proposed in 
this section allows: 

 Introduce a certain standardization in this class of 
models; 

 Create on a regular basis methods for analyzing 
the structural features of models; 

 Obtain (due to the introduction of two types of 
variables – Boolean vectors z and f into the 
model) a plan for solving the problem directly in 
terms of operation symbols; 

 Create efficient planning algorithms due to the 
high parallelism of matrix-vector operations on 
binary vectors. 

Systems of Boolean equations (1) and (2) can be used 
in logical derivation in implementing a strategy for 
moving from initial states to target states ("forward wave" 
- system (1)) and from target states to initial ones 
("reverse wave" - system (2)). However, the 
representation of the problem conditions in the form of 
systems of Boolean equations (1, 2) allows the creation of 
a new approach to constructing plans for solving non-
procedural problems based on dynamic Boolean planning 
models. 

V.  DYNAMIC BOOLEAN PLANNING MODEL 

The vector-matrix model of the subject area 
considered in Section IV accurately reflects the statics of 
the modular system (its structure and functional 
relationships between the input and output actual 
parameters of operations) but does not allow describing 
the dynamics of the system behavior in time in solving 
non-procedural problems. 

A well-known mathematical apparatus for describing 
the dynamics of the behavior of logical systems is 
Boolean differential calculus [9, 10]. This section 
proposes new logical models of modular software 
complexes in the form of systems of nonlinear Boolean 
differential equations. Such systems of equations allow 
effective numerical methods for constructing the 
necessary particular solutions consistent with the problem 
formulation (3). 

The transition from static Boolean equations (1, 2) to 
dynamic ones is carried out by reducing the implication 
operation to the time domain, namely: interpreting the 
implication yx as a cause-and-effect dependence of y 

on x and considering the variables x and y as functions of 

discrete time ,...}2,1,0{t , the logical equation 1 yx  

is put in correspondence a pair of Boolean differential 
equations: 


),()()(

,0)(

txtyty

tx








 

where )(ty  is the time derivative of the function )(ty  

defined by the following relation: 

)1()()(  tytyty 

For 0)()(  tytx  , we receive the original 

equation 1 yx , whose solutions determine the set of 

possible equilibrium states for (4). Replacing cause-and-
effect relationships with temporal ones makes it possible 
to more clearly present the structural features of the 
functioning of a modular computational system and 
dispense with the use of inference tools in solving non-
procedural problem formulations. In a certain sense, 
equations of type (4) combine the original logical relations 
and the means of logical inference for them. 

Following the methodology just considered, we assign 
to the system of matrix Boolean equations (1) a system of 
matrix Boolean differential equations of the form: 


)).(()()(

)),(()()(

tfBtztz

tzAtftf

T 






 

For system (2), the matrix Boolean differential 
equations will be as: 


)).(()()(

)),(()()(

tfAtztz

tzBtftf

T 






 

Systems of equations (5) and (6) describe the 
dynamics of the main and auxiliary bipartite 
computational Boolean networks, respectively. 

In (5, 6) the column ( )(tf , )(tz ) is the state vector of 

these Boolean dynamical systems at time t. 

Taking into account the definition of the derivative, we 

construct partial solutions ),( 0atz , ),( 0atf of the systems 

(5) and ),( 0btz , ),( 0btf of the systems (6) under the 

initial conditions 
Taz 0)0(  , 0)0( f  and 

Tbz 0)0(  , 0)0( f  , respectively. With the passage of 

time ( mnt  ), these particular solutions, as 

nondecreasing functions of time, reach equilibrium states 
(that is, there are no cyclic attractors). Let us denote these 

equilibrium states as )( 0azb , )( 0afb  for system (5) and 

)( 0bza , )( 0bfa  for system (6). Let us introduce the 

notation )()( 00

* bzazz ab   and )()( 00

* bfaff ab  .  

Then the following assertions can be made: 

1. If 00 )( bazb  , then the problem ),( 00 BAT   is 

solvable on the computational model KB and the 

time derivatives ),( 0atf , ),( 0atz  of particular 
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solutions ),( 0atf , ),( 0atz   represent the so-

called preliminary plan for solving problem T 
deployed in time. The components of the vector-

functions ),( 0atf , ),( 0atz are either identically 

equal to zero, or represent elementary functions of 
the form: 










jt

jt
tj

,0

,1
)( 

From a meaningful point of view, the equality 

)(),( 0 tatf ji   means that the operation iF  is 

activated at time jt  , and from equality 

)(),( 0 tatz ki   it follows that the parameter iZ  

receives a value at time kt  . 

Generally speaking, a vector-function ),( 0atf  

defines a network of parallel computations, 

namely: if several vector ),( 0atf  components are 

determined by the same function )(tj , then the 

operations corresponding to these components can 
be activated and executed in parallel. 

2. In the general case, the preliminary plan is 
redundant in the sense that it may contain 
operations, the execution of which in the end 

"gives nothing" to achieve the objective 0B . Their 

elimination is possible due to the formation of 
Boolean vector functions of the form: 


,),()(

,),()(

*

0

*

0

fatfty

zatzty

f

z








 

which determine the so-called complete problem 
solving plan. 

3. If the solution to problem T is not unique, then the 
complete plan is also redundant in the sense that it 
is a "union" of possible plans for solving problem 
T. 

Ultimately, we are interested in non-alternative non-
redundant plans, the plans for which the exclusion of any 
operation (included in the plan) from them leads to the 
loss of solvability of the original problem by this plan. 
The presence of the complete plan allows us to construct a 
set of non-alternative non-redundant plans according to 
the following algebraic method: 

a) For each column of the matrix B with the number 

j, such that 1* jz , we write out an elementary 

disjunction from the variables if , for which 

1ijb ; 

b) Write down the conjunction of the obtained 
elementary disjunctions; 

c) The resulting expression, taking into account the 
laws of idempotency and absorption of the algebra 
of logic, is transformed into a disjunctive normal 
form. The terms of this form determine the set of 
all alternative non-redundant plans for solving the 

problem ),( 00 BAT  . 

VI. ILLUSTRATIVE EXAMPLE 

Let us consider the technology of synthesis of plans 
for solving the “given-to-find” problem on the example of 
a computational Boolean network shown in Fig. 1. 

Matrices A and B corresponding to this network have 
the form: 

;

00010000

00011000

00001000

00000110

00000100

00000101

00000011





























A 

.

10000000

01000000

00100000

00010000

00011000

00001000

00000100





























B 

In the scalar representation, matrix differential 
equations (5) and (6) have the form (8) and (9), 
respectively: 



788

677577

5665466

4355455

32443244

133333

23122

12111

)(

)(

0

0

fzz

fzzzff

fzzzzff

ffzzzff

ffzzzzff

fzzzff

zzzff

zzzff



























 

 
Figure 1.  Main computational Boolean network. The dots denote the 

variables of the vector z (m=8), the circles denote the variables of the 

vector f (n=7). 
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Let us assume that the problem statement T in the 
Boolean representation is given as follows: 

)11000000(0 a , )00000010(0 b . 

After seven steps ( 7t  ) particular solutions 

),( 0atz , ),( 0atf of system (8) and particular solutions 

),( 0btz , ),( 0btf  of  system (9) reach equilibrium states 

).1111010()(

),11111010()(

),1111111()(

),11111111()(

0

0

0

0

colbf

colbz

colaf

colaz

a

a

b

b











So, we have 

).1111010(

),11111010(

*

*

colf

colz






Since 00 )( bazb  , then the given problem is solvable 

on a Boolean computational network and the preliminary 

plan represents the derivative ),( 0atf  of a particular 

solution ),( 0atf of system (7), presented in Table 1. 

In terms of elementary functions )(tj will be: 

)(),(),(),(              

),(),(),(),(),(),(

4070605

2040302001

tatfatfatf

tatfatfatftatf














A complete problem solving plan is formed according 
to equations (7) and is presented in Table 2. 

To verify the resulting plan for uniqueness, we write 
out the logical product of elementary disjunctions 

6421631643321 ))(( fffffffffffff  

which means that the task has two solution plans, and in 

the second plan, operations 2F and 4F can be executed in 

parallel. 

VII.  AUTOMATION TOOLS FOR COMPUTATION 

CONTROL BASED ON THE DYNAMIC PLANNING MODEL 

The HPCSOMAS-MSC platform provides tools for 
creating AMP agents and microservices, tools for 
automating this process, and tools for multi-agent control 

of computations in a hybrid microservice computational 
infrastructure (HMCI). The basic version of 
HPCSOMAS-MSC [11] supports the following control 
schemes:  

 Decentralized control of a group of distributed 
computational agents (DCA), self-organizing 
according to a non-procedural problem statement 
(NPS) on a distributed computational model KB 
(knowledge base) of the subject area;  

 Hierarchical control of the composition of 
microservices formed according to the procedural 
problem statement (PPS), performed by the 
computational agents launching these 
microservices.  

In the modified version of HPCSOMAS-MSC (Fig. 2), 
computation-planning tools are integrated into a separate 
subsystem that provides an additional possibility of 
centralized planning and control for the case of a 
centralized KB formed when creating an AMP based on a 
library of applied modules. To obtain a plan for solving 
the problem, a wizard for the abstract program creation 
uses the dynamic Boolean model proposed in section V. 
The wizard has WEB and API interfaces and works both 
alone and within AMP. In the latter case, the centralized 
planning and control agent (CPC) using this wizard 
receives a plan, according to which it deploys the 
computational microservice agents (CMA) required to 
solve the problem in the HMCI and launches them in the 
order specified by the plan as soon as the data is ready. 
When finished, the CMA returns and passes the output to 
the CPC. At this point, the CMA life cycle ends, and the 
occupied by this agent resource is released. With a 
decentralized approach, due to the presence of a 
decentralized KB, the life cycle of the DCA ends (the 
resource occupied by the agent is released) after receiving 
a message about the completion of the task solution from 
the last completed DCA. Thus, the CPC agent saves 
resources by distributing them dynamically, unlike the 
agent UDA (User Dew Agent, [12]), which manages 
decentralized computing (Fig. 2). So, for the example 
given in Section VI, the CPC will allocate three 

TABLE I.  PRELIMINARY PLAN 

t 
f  

1 2 3 4 5 6 7 

0 1 0 0 0 0 0 0 

2 0 1 1 1 0 0 0 

4 0 0 0 0 1 1 1 

 

TABLE II.  COMPLETE PROBLEM SOLVING PLAN 

t 
fy  

1 2 3 4 5 6 7 

0 1 0 0 0 0 0 0 

2 0 1 1 1 0 0 0 

4 0 0 0 0 0 1 0 
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computing resources for the first plan or four resources for 
the second one. The UDA will allocate seven resources. If 
necessary, the CPC agent is duplicated and receives the 
CMA launch monitoring protocol from the main CPC 
agent to increase the reliability of computations. 

VIII.  CONCLUSION 

This article proposes new logical models of modular 

software complexes in the form of systems of nonlinear 

Boolean differential equations. Such systems allow both 

the creation of efficient methods for constructing the 

necessary particular solutions for high-dimensional 

models and the use of analytical and qualitative methods 

for studying the required dynamic properties of their 

solutions. 

From a practical point of view, it is important to note 

that the logical models of modular software complexes in 

the form of systems of Boolean differential equations 

allow effective both software and hardware 

implementation. In this case, it becomes possible to use 

them to build high-speed programmable logic control 

devices. Another important area of application of the 

presented models is the construction of real-time 

intelligent control systems for moving objects, which 

provide dynamic reconfiguration of the structure and 

synthesis of control programs during the object 

functioning. 
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