
Binary Dynamic Models of Structural Synthesis

of Programs

G.A. Oparin, V.G. Bogdanova and A.A. Pashinin

Matrosov Institute for System Dynamics and Control Theory of SB RAS, Irkutsk, Russia

prn51@icc.ru, bvg@icc.ru, apcrol@gmail.com

Abstract – In this paper, we propose a matrix-vector

Boolean differential model for constructing plans of

computational actions in solving non-procedural problems

on a computational model of a modular software system.

The conditions of the problem of structural synthesis of a

program from pre-implemented modules are formulated as

a system of Boolean differential equations, the solutions of

which, under given initial conditions (consistent with the

non-procedural formulation of the problem), determine the

solvability of the problem and give constructive plans for its

solution (including parallel ones). The proposed method of

structural synthesis is focused on high-dimensional models.

It allows highly efficient software implementation due to the

high parallelism of performing vector-matrix operations on

binary vectors at the level of machine instructions. The

developed model is used for planning computations in

packages of applied microservices based on the

HPCSOMAS-MSC platform.

Keywords – computational model; Boolean differential

equations; abstract program; action planning

I. INTRODUCTION

There is a wide class of complex subject areas in
which the process of computer solving of problems is
represented as a step-by-step execution of modules-
procedures from the set M, working on a common field of
variables Z, which are the actual parameters of these
procedures. Typical representatives of software systems
with such an organization are computing software
packages with functional content in the form of libraries
of autonomously compiled modules
(subroutines/functions written in the traditional sequential
programming languages Fortran/C), as well as tool
environments for organizing distributed computing, which
allows integrating geographically remote heterogeneous
autonomous computational resources into one resource-
intensive multidisciplinary task.

A distinctive feature of this kind of applied
computation is as follows: the variables from Z in these
computations act as distinguished concepts of the theory
and concurrent parameters of the problem statement and
therefore have applied independent semantics. Many
problems within some applied theories consist of the fact
that it is required to find the required quantities

from ZB 0 , using other quantities ZA 0 whose

values are considered known. The solution to such a

computational problem),(00 BAT (if it exists) is the

composition of functions extracted from the

computational model as a network of functional relations
of the computability of quantities in the considered theory.
It is not required to know how its constituent functions
(i.e., modules from M) are calculated to prove the
existence of a solution - it is enough to know only the
names of these functions (the set of operation symbols F)
and associated with these names the sets of input and
output parameter names from Z. The proof of existence
must be constructive. It means that in the course of the
proof a problem solving plan must be constructed (an
abstract program).

The transformation of a plan into a specific program
depends on the specific capabilities of the hardware and
software of the computational environment and is not
considered in this article.

The article is organized in the following way. Section
II provides a brief overview of the problem of structural
program synthesis. Section III describes the knowledge
base of the abstract program planner. Section IV is
devoted to the static Boolean planning model. Section V
contains the equations of the dynamic planning model.
Section VI discloses the technology of applying the
developed theoretical results on the example of a small
computational Boolean network. Section VII describes the
means of automating the management of computations
based on a dynamic model. Section VIII contains a
conclusion on the results achieved during the study.

II. RELEATED WORK

Automated generation of plans for solving problems in
various subject areas is one of the main areas of research
in artificial intelligence, which has been discussed for a
long time in foreign and domestic literature [1]. The
problem of obtaining abstract programs or, in other words,
plans for computational actions on a computational
domain model is known as the planning problem in the
structural synthesis of programs.

A new wave of increased interest in the idea of
program synthesis is mainly associated with the
understanding of the possibility of representing a synthesis
problem in the form of a Boolean satisfiability problem [2,
3], for which efficient algorithms for its solution are
developed.

Structural program synthesis is a method of
constructing programs from pre-implemented modules
that are treated as functions. For the first time, the idea of
structural synthesis of programs was presented in a report

MIPRO 2023/AIS 1173

[4] at a conference on algorithms in modern mathematics
and computer science, organized by A. Ershov and D.
Knuth in 1979. More recently, this idea stimulates the
creation of new modern integrated environments for the
development of domain-specific software based on the
structural synthesis of programs. For example, CoCoVila
[5] supports visual and simulation software development
and uses structural program synthesis to translate
declarative specifications of simulation tasks into
executable code. The HPCSOMAS platform [6] provides
automated development of applied microservice packages
(AMP) for distributed scientific computations. The
CLAVIRE framework [7] represents a set of high-level
tools for solving e-Science problems within the data-
driven approach. Based on iPSE (Intelligent Problem
Solving Environment), it allows one to interact with the
user based on domain-specific knowledge.

The traditional planning technique in the structural
synthesis of programs is deductive means of proving
theorems based on the methods of mathematical logic [8].
Our approach to the synthesis of abstract programs (both
parallel and sequential) is based on the systematic use of
binary dynamical systems as the main formalism of the
internal representation for the computational domain
model. The search for a plan under these conditions is
reduced to constructing particular solutions for such
dynamical systems. AI planning languages are not
considered in this paper.

III. PLANNER KNOWLEDGE BASE

As the knowledge base (KB) of the planner, the

computational model),,,(OutInZFKB is used, where

Z is a finite set of symbols (names) of parameters
(attributes, values of the subject area), and F is a finite set
of symbols of k+p arity operations (k and p, generally
speaking, are different for different operation symbols).

ZFIn and ZFOut define relationships between

operations and parameters at the input and output,

respectively. Each symbol of the operation FFi of

arity ii pk is connected to the set ZFin i)(from ik of

input parameters and a set ZFout i)(from ip of output

parameters associated with it. In terms of content, the

operation FFi implies the possibility of calculating

variables)(iFout from variables)(iFin using some

program module iM from the library of modules M.

It is assumed that the KB has a high level of internal
parallelism and is redundant in the sense that only a part
of the operations from F is used to solve the problem, and
(or) the problem T has several alternative solution plans.

Relationships of both In and Out are conveniently
specified as two Boolean matrices A and B with
dimensions mn , whose elements are formed as follows:

1ija (1ijb) if the parameter jZ is input (output) for

the operation iF . The matrices A and B will be referred to

as the input and output matrices, respectively. Rows of

matrices iA and iB are the binary representation of the set

of input parameters)(iFin and output ones)(iFout of

the operation iF , respectively. Similarly to the relations In

and Out, it is also convenient to represent the required
input-output relation of the problem statement

),(00 BAT in the form of m-dimensional Boolean strings

0a and 0b , assuming that the j-th element of these strings

takes the value equal to 1 if the parameter
jZ is input

(output) in the problem statement T.

IV. STATIC BOOLEAN PLANNING MODEL

Let us associate the parameter vectors Z and the
operation F with the Boolean vectors z and f, the values of

the components of which (iz and if) will be determined

as follows: 1iz , if the value of the parameter iZ is

known (given or calculated), and 0iz - otherwise,

1if , if the operation iF is executed and 0if -

otherwise.

Let us assume that over Boolean matrices and vectors,
the elementwise operations of disjunction , conjunction
 (hereinafter, this sign is replaced by a dot or omitted
completely), negation , addition modulo two , and

implication are defined.

Let TA be the matrix transposed to A. Let E be the
column, all elements of which are equal to one. The
symbols and will also mean the and product

of two matrices:

).(where,

, where,

jkij
j

ik

jkij
j

ik

bacBAC

bacBAC

Taking into account the introduced notation, the
relations reflecting the relationship of operations with
input and output parameters can be written as a system of
two matrix Boolean equations

.

,

EzfB

EfzA

T

A distinctive feature of system (1) is its large
dimension and strong sparseness of the matrices A and B.
Along with the original system we need the derivative
from system (1), called the inverse:

.

,

EfAz

EzBf

T

In the vector-matrix form, the statement of the

problem),(00 BAT corresponds to a Boolean equation

of the form

 100 zbza

1174 MIPRO 2023/AIS

Due to the equivalence of the calculus of functional
dependencies to a fragment of the propositional calculus,

it is easy to show that the problem),(00 BAT is solvable

in the KB if and only if equation (3) is a logical
consequence of the system of equations (1) in the sense
that all solutions of system (1) are solutions of equation
(3).

The vector-matrix Boolean formalism of
representation of the computational model KB proposed in
this section allows:

 Introduce a certain standardization in this class of
models;

 Create on a regular basis methods for analyzing
the structural features of models;

 Obtain (due to the introduction of two types of
variables – Boolean vectors z and f into the
model) a plan for solving the problem directly in
terms of operation symbols;

 Create efficient planning algorithms due to the
high parallelism of matrix-vector operations on
binary vectors.

Systems of Boolean equations (1) and (2) can be used
in logical derivation in implementing a strategy for
moving from initial states to target states ("forward wave"
- system (1)) and from target states to initial ones
("reverse wave" - system (2)). However, the
representation of the problem conditions in the form of
systems of Boolean equations (1, 2) allows the creation of
a new approach to constructing plans for solving non-
procedural problems based on dynamic Boolean planning
models.

V. DYNAMIC BOOLEAN PLANNING MODEL

The vector-matrix model of the subject area
considered in Section IV accurately reflects the statics of
the modular system (its structure and functional
relationships between the input and output actual
parameters of operations) but does not allow describing
the dynamics of the system behavior in time in solving
non-procedural problems.

A well-known mathematical apparatus for describing
the dynamics of the behavior of logical systems is
Boolean differential calculus [9, 10]. This section
proposes new logical models of modular software
complexes in the form of systems of nonlinear Boolean
differential equations. Such systems of equations allow
effective numerical methods for constructing the
necessary particular solutions consistent with the problem
formulation (3).

The transition from static Boolean equations (1, 2) to
dynamic ones is carried out by reducing the implication
operation to the time domain, namely: interpreting the
implication yx as a cause-and-effect dependence of y

on x and considering the variables x and y as functions of

discrete time ,...}2,1,0{t , the logical equation 1 yx

is put in correspondence a pair of Boolean differential
equations:

),()()(

,0)(

txtyty

tx

where)(ty is the time derivative of the function)(ty

defined by the following relation:

)1()()(tytyty

For 0)()(tytx , we receive the original

equation 1 yx , whose solutions determine the set of

possible equilibrium states for (4). Replacing cause-and-
effect relationships with temporal ones makes it possible
to more clearly present the structural features of the
functioning of a modular computational system and
dispense with the use of inference tools in solving non-
procedural problem formulations. In a certain sense,
equations of type (4) combine the original logical relations
and the means of logical inference for them.

Following the methodology just considered, we assign
to the system of matrix Boolean equations (1) a system of
matrix Boolean differential equations of the form:

)).(()()(

)),(()()(

tfBtztz

tzAtftf

T

For system (2), the matrix Boolean differential
equations will be as:

)).(()()(

)),(()()(

tfAtztz

tzBtftf

T

Systems of equations (5) and (6) describe the
dynamics of the main and auxiliary bipartite
computational Boolean networks, respectively.

In (5, 6) the column ()(tf ,)(tz) is the state vector of

these Boolean dynamical systems at time t.

Taking into account the definition of the derivative, we

construct partial solutions),(0atz ,),(0atf of the systems

(5) and),(0btz ,),(0btf of the systems (6) under the

initial conditions
Taz 0)0(, 0)0(f and

Tbz 0)0(, 0)0(f , respectively. With the passage of

time (mnt), these particular solutions, as

nondecreasing functions of time, reach equilibrium states
(that is, there are no cyclic attractors). Let us denote these

equilibrium states as)(0azb ,)(0afb for system (5) and

)(0bza ,)(0bfa for system (6). Let us introduce the

notation)()(00

* bzazz ab and)()(00

* bfaff ab .

Then the following assertions can be made:

1. If 00)(bazb , then the problem),(00 BAT is

solvable on the computational model KB and the

time derivatives),(0atf ,),(0atz of particular

MIPRO 2023/AIS 1175

solutions),(0atf ,),(0atz represent the so-

called preliminary plan for solving problem T
deployed in time. The components of the vector-

functions),(0atf ,),(0atz are either identically

equal to zero, or represent elementary functions of
the form:

jt

jt
tj

,0

,1
)(

From a meaningful point of view, the equality

)(),(0 tatf ji means that the operation iF is

activated at time jt , and from equality

)(),(0 tatz ki it follows that the parameter iZ

receives a value at time kt .

Generally speaking, a vector-function),(0atf

defines a network of parallel computations,

namely: if several vector),(0atf components are

determined by the same function)(tj , then the

operations corresponding to these components can
be activated and executed in parallel.

2. In the general case, the preliminary plan is
redundant in the sense that it may contain
operations, the execution of which in the end

"gives nothing" to achieve the objective 0B . Their

elimination is possible due to the formation of
Boolean vector functions of the form:

,),()(

,),()(

*

0

*

0

fatfty

zatzty

f

z

which determine the so-called complete problem
solving plan.

3. If the solution to problem T is not unique, then the
complete plan is also redundant in the sense that it
is a "union" of possible plans for solving problem
T.

Ultimately, we are interested in non-alternative non-
redundant plans, the plans for which the exclusion of any
operation (included in the plan) from them leads to the
loss of solvability of the original problem by this plan.
The presence of the complete plan allows us to construct a
set of non-alternative non-redundant plans according to
the following algebraic method:

a) For each column of the matrix B with the number

j, such that 1* jz , we write out an elementary

disjunction from the variables if , for which

1ijb ;

b) Write down the conjunction of the obtained
elementary disjunctions;

c) The resulting expression, taking into account the
laws of idempotency and absorption of the algebra
of logic, is transformed into a disjunctive normal
form. The terms of this form determine the set of
all alternative non-redundant plans for solving the

problem),(00 BAT .

VI. ILLUSTRATIVE EXAMPLE

Let us consider the technology of synthesis of plans
for solving the “given-to-find” problem on the example of
a computational Boolean network shown in Fig. 1.

Matrices A and B corresponding to this network have
the form:

;

00010000

00011000

00001000

00000110

00000100

00000101

00000011

A

.

10000000

01000000

00100000

00010000

00011000

00001000

00000100

B

In the scalar representation, matrix differential
equations (5) and (6) have the form (8) and (9),
respectively:

788

677577

5665466

4355455

32443244

133333

23122

12111

)(

)(

0

0

fzz

fzzzff

fzzzzff

ffzzzff

ffzzzzff

fzzzff

zzzff

zzzff

Figure 1. Main computational Boolean network. The dots denote the

variables of the vector z (m=8), the circles denote the variables of the

vector f (n=7).

1176 MIPRO 2023/AIS

0

0

0

)(

)(

)()(

)(

)(

8

7877

6766

7655655

6544544

432335433

4122422

2111311

z

zzff

zzff

ffzzzff

ffzzzff

fffzzzzff

ffzzzff

ffzzzff

Let us assume that the problem statement T in the
Boolean representation is given as follows:

)11000000(0 a ,)00000010(0 b .

After seven steps (7t) particular solutions

),(0atz ,),(0atf of system (8) and particular solutions

),(0btz ,),(0btf of system (9) reach equilibrium states

).1111010()(

),11111010()(

),1111111()(

),11111111()(

0

0

0

0

colbf

colbz

colaf

colaz

a

a

b

b

So, we have

).1111010(

),11111010(

*

*

colf

colz

Since 00)(bazb , then the given problem is solvable

on a Boolean computational network and the preliminary

plan represents the derivative),(0atf of a particular

solution),(0atf of system (7), presented in Table 1.

In terms of elementary functions)(tj will be:

)(),(),(),(

),(),(),(),(),(),(

4070605

2040302001

tatfatfatf

tatfatfatftatf

A complete problem solving plan is formed according
to equations (7) and is presented in Table 2.

To verify the resulting plan for uniqueness, we write
out the logical product of elementary disjunctions

6421631643321))((fffffffffffff

which means that the task has two solution plans, and in

the second plan, operations 2F and 4F can be executed in

parallel.

VII. AUTOMATION TOOLS FOR COMPUTATION

CONTROL BASED ON THE DYNAMIC PLANNING MODEL

The HPCSOMAS-MSC platform provides tools for
creating AMP agents and microservices, tools for
automating this process, and tools for multi-agent control

of computations in a hybrid microservice computational
infrastructure (HMCI). The basic version of
HPCSOMAS-MSC [11] supports the following control
schemes:

 Decentralized control of a group of distributed
computational agents (DCA), self-organizing
according to a non-procedural problem statement
(NPS) on a distributed computational model KB
(knowledge base) of the subject area;

 Hierarchical control of the composition of
microservices formed according to the procedural
problem statement (PPS), performed by the
computational agents launching these
microservices.

In the modified version of HPCSOMAS-MSC (Fig. 2),
computation-planning tools are integrated into a separate
subsystem that provides an additional possibility of
centralized planning and control for the case of a
centralized KB formed when creating an AMP based on a
library of applied modules. To obtain a plan for solving
the problem, a wizard for the abstract program creation
uses the dynamic Boolean model proposed in section V.
The wizard has WEB and API interfaces and works both
alone and within AMP. In the latter case, the centralized
planning and control agent (CPC) using this wizard
receives a plan, according to which it deploys the
computational microservice agents (CMA) required to
solve the problem in the HMCI and launches them in the
order specified by the plan as soon as the data is ready.
When finished, the CMA returns and passes the output to
the CPC. At this point, the CMA life cycle ends, and the
occupied by this agent resource is released. With a
decentralized approach, due to the presence of a
decentralized KB, the life cycle of the DCA ends (the
resource occupied by the agent is released) after receiving
a message about the completion of the task solution from
the last completed DCA. Thus, the CPC agent saves
resources by distributing them dynamically, unlike the
agent UDA (User Dew Agent, [12]), which manages
decentralized computing (Fig. 2). So, for the example
given in Section VI, the CPC will allocate three

TABLE I. PRELIMINARY PLAN

t
f

1 2 3 4 5 6 7

0 1 0 0 0 0 0 0

2 0 1 1 1 0 0 0

4 0 0 0 0 1 1 1

TABLE II. COMPLETE PROBLEM SOLVING PLAN

t
fy

1 2 3 4 5 6 7

0 1 0 0 0 0 0 0

2 0 1 1 1 0 0 0

4 0 0 0 0 0 1 0

MIPRO 2023/AIS 1177

computing resources for the first plan or four resources for
the second one. The UDA will allocate seven resources. If
necessary, the CPC agent is duplicated and receives the
CMA launch monitoring protocol from the main CPC
agent to increase the reliability of computations.

VIII. CONCLUSION

This article proposes new logical models of modular

software complexes in the form of systems of nonlinear

Boolean differential equations. Such systems allow both

the creation of efficient methods for constructing the

necessary particular solutions for high-dimensional

models and the use of analytical and qualitative methods

for studying the required dynamic properties of their

solutions.

From a practical point of view, it is important to note

that the logical models of modular software complexes in

the form of systems of Boolean differential equations

allow effective both software and hardware

implementation. In this case, it becomes possible to use

them to build high-speed programmable logic control

devices. Another important area of application of the

presented models is the construction of real-time

intelligent control systems for moving objects, which

provide dynamic reconfiguration of the structure and

synthesis of control programs during the object

functioning.

ACKNOWLEDGMENT

The study was supported by the Ministry of Science
and Higher Education of the Russian Federation, project
no. 121032400051-9. The authors would like to thank
Irkutsk Supercomputer Center of SB RAS for providing
access to HPC-cluster “Akademik V.M. Matrosov” [13].

REFERENCES

[1] M. Ghallab, D. S. Nau, and P. Traverso “Automated planning:

theory and practice,” Morgan Kaufmann, May 2004.

[2] A. Solar-Lezama, “Program synthesis by sketching,” Diss.
UNIVERSITY OF CALIFORNIA, BERKELEY, 2008.

[3] G. A. Oparin, A. P. Novopashin, “Boolean models and planning
methods for parallel abstract programs,” Autom. Remote Control,
vol. 69, no. 8, 2008, pp. 1423–1432.

[4] E.H. Tyugu, “The structural synthesis of programs,” in Algorithms
in Modern Mathematics and Computer Science, LNCS, vol. 122,
A.P. Ershov and D.E. Knuth, Eds., Berlin, Heidelberg: Springer,
1981, pp. 290–303.

[5] V. Kotkas, A. Ojamaa, P. Grigorenko, R. Maigre, M. Harf, and E.
Tyugu, “CoCoViLa as a multifunctional simulation platform,” in
International ICST Conference on Simulation Tools and
Techniques, Brussels: ICST, 2011, pp. 1–8.

[6] G.A. Oparin, V.G. Bogdanova, A.A. Pashinin, and S.A. Gorsky,
“Microservice-oriented approach to automation of distributed
scientific computations,” in 42nd Intern. Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, Croatia, 2019, pp. 236-241.

[7] K.V. Knyazkov, S.V. Kovalchuk, T.N. Tchurov, S.V. Maryin, and
A.V. Boukhanovsky, “CLAVIRE: e-science infrastructure for
data-driven computing,” Journal of Computational Science, 2012,
vol. 3, no. 6, pp. 504–510.

[8] G. Mints, E. Tyugu, “Justification of the structural synthesis of
programs,” Science of Computer Programming, 1982, vol. 2, no.
3, pp. 215–240.

[9] D. Bohmann, R. S. Stankovič, Zh. Toshich, V. P. Shmerko, and S.
N. Yanushkevich, “Logic differential calculus: achievements,
trends, and applications,” Autom. Remote Control, 2000, vol. 61,
no. 6, part 2, pp. 1033–1047,
https://zbmath.org/pdf/1060.94051.pdf [accessed: March 16
2023].

[10] D. Bochmann, C. Posthoff, “Binäre dynamische systeme,” Berlin:
Akademie-Verlag, 1981.

[11] G.A. Oparin, V.G. Bogdanova, and A.A. Pashinin, “Automated
tools for the development of microservice compositions for hybrid
scientific computations,” in 2nd Information, Computation, and
Control Systems for Distributed Environments, 2020, pp. 201–
213.

[12] A.A. Pashinin and V.G. Bogdanova, “Application of user dew
agent in hybrid-computing environments,” in 1st International
Workshop on Advanced Information and Computation
Technologies and Systems (AICTS), 2020, pp. 135–145.

[13] “Irkutsk Supercomputer Centre of SB RAS,” http://hpc.icc.ru
[online, accessed: January 31 2023].

Figure 2. HPCSOMAS-MSC tools for working with AMP

1178 MIPRO 2023/AIS

